Association between Genetic Variants in the 8q24 Cancer Risk Regions and Circulating Levels of Androgens and Sex Hormone-Binding Globulin

Division of Cancer Epidemiology and Genetics, National Cancer Institute, NIH, Bethesda, MD, USA.
Cancer Epidemiology Biomarkers & Prevention (Impact Factor: 4.32). 07/2010; 19(7):1848-54. DOI: 10.1158/1055-9965.EPI-10-0101
Source: PubMed

ABSTRACT Genome-wide association studies have identified multiple independent regions on chromosome 8q24 that are associated with cancers of the prostate, breast, colon, and bladder.
To investigate their biological basis, we examined the possible association between 164 single nucleotide polymorphisms (SNPs) in the 8q24 risk regions spanning 128,101,433-128,828,043 bp, and serum androgen (testosterone, androstenedione, 3alphadiol G, and bioavailable testosterone), and sex hormone-binding globulin levels in 563 healthy, non-Hispanic, Caucasian men (55-74 years old) from a prospective cohort study (the Prostate, Lung, Colorectal, and Ovarian Cancer Screening Trial). Age-adjusted linear regression models were used to determine the association between the SNPs in an additive genetic model and log-transformed biomarker levels.
Three adjacent SNPs centromeric to prostate cancer risk-region 2 (rs12334903, rs1456310, and rs980171) were associated with testosterone (P < 1.1 x 10(-3)) and bioavailable testosterone (P < 6.3 x 10(-4)). Suggestive associations were seen for a cluster of nine SNPs in prostate cancer risk region 1 and androstenedione (P < 0.05).
These preliminary findings require confirmation in larger studies but raise the intriguing hypothesis that genetic variations in the 8q24 cancer risk regions might correlate with androgen levels. Impact: These results might provide some clues for the strong link between 8q24 and prostate cancer risk.

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Esophageal cancer remains the sixth leading cause of cancer associated death and eighth most common cancer worldwide. Genetic factors, such as single nucleotide polymorphisms (SNPs), may contribute to the carcinogenesis of esophageal cancer. Here, we conducted a hospital based case-control study to evaluate the genetic susceptibility of functional SNPs on the development of esophageal cancer. A total of 629 esophageal squamous cell carcinoma (ESCC) cases and 686 controls were enrolled for this study. The OPG rs3102735 T>C, rs2073618 G>C, RANK rs1805034 T>C, RANKL rs9533156 T>C and rs2277438 A>G were determined by ligation detection reaction method. Our findings suggested that RANK rs1805034 T>C is associated with the susceptibility of ESCC, which is more evident in male and elder (≥63) patients. Our study provides the first evidence that functional polymorphisms RANK rs1805034 T>C may be an indicator for individual susceptibility to ESCC. However, further larger studies among different ethnic populations are warranted to verify our conclusion.
    PLoS ONE 07/2014; 9(7):e101705. DOI:10.1371/journal.pone.0101705 · 3.53 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Sex hormone-binding globulin (SHBG) is known as a carrier protein. It is classically thought to be mainly synthesized in the liver and then secreted into the circulating system, where it binds to sex steroids with a high affinity and modulates the bio-availability of the hormones. Other organs known to produce SHBG include brain, uterus, testis, prostate, breast and ovary, and the local expressed SHBG may play an important role in tumor development. However, SHBG expression status and its clinicopathological significance in ovarian cancer cells are not reported yet. In our present study, we examined and found the variable SHBG expression in four ovarian cancer cell lines (OV-90, OVCAR-3, SKOV-3 and ES-2) by immunocytochemistry and Western blotting. We then extended our study to 248 ovarian carcinoma samples, which were collected at The Norwegian Radium Hospital, Oslo University Hospital with complete clinical information, and discovered that SHBG was variably expressed in these ovarian carcinomas. Higher level of SHBG expression was significantly associated with more aggressive histological subtype (p = 0.022), higher FIGO stage (p = 0.018) and higher histological grade (grade of differentiation, p = 0.020), although association between SHBG expression and OS/PFS was not observed. Our results demonstrate that ovarian cancer cells produce SHBG and higher SHBG expression in ovarian carcinoma is associated with unfavorable clinicopathological features.
    PLoS ONE 12/2013; 8(12):e83238. DOI:10.1371/journal.pone.0083238 · 3.53 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Prostate cancer (PC) is the most common malignancy in males. It is evident that genetic factors at both germline and somatic levels play critical roles in prostate carcinogenesis. Recently, genome-wide association studies (GWAS) by high-throughput genotyping technology have identified more than 70 germline variants on various genes or chromosome loci that are significantly associated with PC susceptibility. They include multiple 8q24 loci, prostate-specific genes, and metabolism-related genes. Somatic alterations in PC genome have been explored by high-throughput sequencing technologies such as whole genome sequencing and RNA sequencing, which have identified a variety of androgen-response events and fusion transcripts represented by ETS gene fusions. Recent innovations in high-throughput genomic technologies have enabled us to analyze PC genomics more comprehensively, more precisely, and on a larger scale in multiple ethnic groups to increase our understanding of PC genomics and biology in germline and somatic studies, which can ultimately lead to personalized medicine for PC diagnosis, prevention, and therapy. However, these data indicate that the PC genome is more complex and heterogeneous than we expected from GWAS and sequencing analyses.
    Endocrine Related Cancer 04/2013; 20(4). DOI:10.1530/ERC-13-0113 · 4.91 Impact Factor

Full-text (2 Sources)

Available from
May 17, 2014