Article

Water replacement hypothesis in atomic details: effect of trehalose on the structure of single dehydrated POPC bilayers.

Laboratory of Plant Physiology, Wageningen University, Wageningen, The Netherlands.
Langmuir (Impact Factor: 4.19). 07/2010; 26(13):11118-26. DOI: 10.1021/la100891x
Source: PubMed

ABSTRACT We present molecular dynamics (MD) simulations to study the plausibility of the water replacement hypothesis (WRH) from the viewpoint of structural chemistry. A total of 256 2-oleoyl-1-palmitoyl-sn-glycero-3-phosphocholine (POPC) lipids were modeled for 400 ns at 11.7 or 5.4 waters/lipid. To obtain a single dehydrated bilayer relevant to the WRH, simulations were performed in the NP(xy)h(z)T ensemble with h(z) > 8 nm, allowing interactions between lipids in the membrane plane and preventing interactions between neighboring membranes via periodic boundary conditions. This setup resulted in a stable single bilayer in (or near) the gel state. Trehalose caused a concentration-dependent increase of the area per lipid (APL) accompanied by fluidizing the bilayer core. This mechanism has been suggested by the WRH. However, dehydrated bilayers in the presence of trehalose were not structurally identical to fully hydrated bilayers. The headgroup vector was in a more parallel orientation in dehydrated bilayers with respect to the bilayer plane and maintained this orientation in the presence of trehalose in spite of APL increase. The total dipole potential changed sign in dehydrated bilayers and remained slightly positive in the presence of trehalose. The model of a dehydrated bilayer presented here allows the study of the mechanisms of membrane protection against desiccation by different compounds.

0 Bookmarks
 · 
71 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Molecular dynamics simulations have been used to characterize the effects of transfer from aqueous solution to a vacuum to inform our understanding of mass spectrometry of membrane-protein-detergent complexes. We compared two membrane protein architectures (an α-helical bundle versus a β-barrel) and two different detergent types (phosphocholines versus an alkyl sugar) with respect to protein stability and detergent packing. The β-barrel membrane protein remained stable as a protein-detergent complex in vacuum. Zwitterionic detergents formed conformationally destabilizing interactions with an α-helical membrane protein after detergent micelle inversion driven by dehydration in vacuum. In contrast, a nonionic alkyl sugar detergent resisted micelle inversion, maintaining the solution-phase conformation of the protein. This helps to explain the relative stability of membrane proteins in the presence of alkyl sugar detergents such as dodecyl maltoside.
    Biophysical Journal 08/2013; 105(3):648-56. · 3.67 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The yeast Saccharomyces cerevisiae was shown to be extremely sensitive to dehydration-rehydration treatments when stationary phase cells were subjected to conditions of severe oxygen limitation, unlike the same cells grown in aerobic conditions. The viability of dehydrated anaerobically grown yeast cells never exceeded 2 %. It was not possible to increase this viability using gradual rehydration of dry cells in water vapour, which usually strongly reduces damage to intracellular membranes. Specific pre-dehydration treatments significantly increased the resistance of anaerobic yeast to drying. Thus, incubation of cells with trehalose (100 mM), increased the viability of dehydrated cells after slow rehydration in water vapour to 30 %. Similarly, pre-incubation of cells in 1 M xylitol or glycerol enabled up to 50-60 % of cells to successfully enter a viable state of anhydrobiosis after subsequent rehydration. We presume that trehalose and sugar alcohols function mainly according to a water replacement hypothesis, as well as initiating various protective intracellular reactions.
    Antonie van Leeuwenhoek 05/2014; · 2.07 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Characterization of chitosan-tripolyphosphate nanoparticles is presented with the aim of correlating particle shape and morphology, size distribution, surface chemistry, and production automatisation with preparation procedure and chitosan molecular weight and loaded protein. Nanoparticles were prepared by adding drop wise a tripolyphosphate-pentasodium solution to chitosan solutions under stirring. Trehalose, mannitol and polyethylene-glycol as bioprotectants were used to prevent particle aggregation and to reduce mechanical stress during freezing and drying processes. As a novel result, time evolution of the particle size distribution curve showed the presence of a bimodal population composed of a fraction of small particles and of a second fraction of larger particles attributed to the rearrangement of particles after the addition of tripolyphosphate. Storage for 4 weeks resulted in a slight increase in average size, due to the continuous rearrangement of small particles. Improvement of nanoparticle stability after lyophilisation and spray-drying was observed in the presence of all bioprotectants. Trehalose was the best protectant for both methods. Finally, in vivo tests using chick embryos assessed the biocompatibility of chitosan, tripolyphosphate and the nanoparticles. The simple ionotropic gelation method with low-MW chitosan was effective in achieving reproducible nanoparticles with the desired physico-chemical and safety characteristics.
    International Journal of Pharmaceutics 07/2013; · 3.99 Impact Factor

Full-text

View
16 Downloads
Available from
May 28, 2014