Postactivation Potentiation Following Different Modes of Exercise

Cardiff School of Sport, University of Wales Institute, Cardiff, United Kingdom.
The Journal of Strength and Conditioning Research (Impact Factor: 2.08). 07/2010; 24(7):1911-6. DOI: 10.1519/JSC.0b013e3181dc47f8
Source: PubMed


The performance characteristics of skeletal muscle are transient in nature and have been shown to be significantly affected by its contractile history, where the phenomenon of acute enhancement is termed postactivation potentiation (PAP). Acute enhancement of dynamic activity has been observed when preceded by resistance exercises; however little information exists for plyometric activity as a conditioning stimulus. In addition, no study has examined PAP effects on more than one subsequent performance trial. The purpose of the present study was to determine whether countermovement jump (CMJ) performance could be enhanced if preceded by heavy-resistance exercise or by dynamic plyometric activity over 3 trials. Thirteen anaerobically trained male subjects (mean +/- SD: age, 22 +/- 3 years; height, 182.4 +/- 4.3 cm; body mass, 82.7 +/- 9.2 kg) performed in a counterbalanced order 3 half squats using a 3 repetition maximum loading (SQUAT), a set of 24 contacts of lower body plyometric exercises (PLYO), or a control of no activity (REST) 5 minutes before each CMJ. Three sets of each treatment and CMJ were performed in total and maximal displacement (dmax), peak power (Ppeak), and peak vertical force (Fpeak) were recorded, whereas rate of force development and relative force (F/body mass) were calculated for every trial. No significant differences were revealed for any of the other variables, but greater displacement was found for SQUAT compared to REST or PLYO, whereas no differences were revealed for any of the conditions for the repeated trials. Although heavy resistance-induced PAP seems to enhance jump height compared to REST or PLYO in repeated CMJ performance, it has no additional benefit on repeated trials.

Download full-text


Available from: Theodoros Bampouras, Jan 30, 2014
259 Reads
  • Source
    • "Further mechanisms include volume, intensity and type of the conditioning contractions, the time between conditioning contractions and the subsequent athletic activity, as well as the type of the subsequent athletic activity (for review see [15]). The matching of the type of conditioning contraction and the type of the subsequent activity has been suggested to be particularly important in order to achieve PAP-induced performance gains in athletic activities [15,16]. In line with this reasoning, several authors have recommended reactive stretch-shortening cycle movements like drop jumps or hops in the preparation for explosive movements [17,18]. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Postactivation potentiation (PAP) has been defined as the increase in twitch torque after a conditioning contraction. The present study aimed to investigate the effectiveness of hops as conditioning contractions to induce PAP and increase performance in subsequent maximal drop jumps. In addition, we wanted to test if and how PAP can contribute to increases in drop jump rebound height. Twelve participants performed 10 maximal two-legged hops as conditioning contractions. Twitch peak torques of triceps surae muscles were recorded before and after the conditioning hops. Then, subjects performed drop jumps with and without 10 conditioning hops before each drop jump. Recordings included ground reaction forces, ankle and knee angles and electromyographic activity in five leg muscles. In addition, efferent motoneuronal output during ground contact was estimated with V-wave stimulation. The analyses showed that after the conditioning hops, twitch peak torques of triceps surae muscles were 32% higher compared to baseline values (P < 0.01). Drop jumps performed after conditioning hops were significantly higher (12%, P < 0.05), but V-waves and EMG activity remained unchanged. The amount of PAP and the change in drop jump rebound height were positively correlated (r(2) = 0.26, P < 0.05). These results provide evidence for PAP in triceps surae muscles induced by a bout of hops and indicate that PAP can contribute to the observed performance enhancements in subsequent drop jumps. The lack of change in EMG activity and V-wave amplitude suggests that the underlying mechanisms are more likely intramuscular than neural in origin.
    PLoS ONE 10/2013; 8(10):e77705. DOI:10.1371/journal.pone.0077705 · 3.23 Impact Factor
  • Source
    • "In support of the first explanation, Till and Cooke (2009) also reported a failure of 5 double-legged tuck jumps to enhance the excitability of the fast twitch motor units and to cause a PAP effect. Unfortunately in the present study, as well as in other similar studies (Esformes et al., 2010; Masamoto et al., 2003) electromyography was not performed, hence a mechanism by which plyometric exercises may enhance CMJ performance was not provided. Another possible explanation for the lack of a decrease in CMJ performance after short duration stretching during warm-up is the training level of the participants, who were international fencers with long training histories and adaptations. "
    [Show abstract] [Hide abstract]
    ABSTRACT: This study examined the effects of two different warm-up protocols on lower limb power and flexibility in high level athletes. Twenty international level fencers (10 males and 10 females) performed two warm-up protocols that included 5-min light jogging and either short (15s) or long (45s) static stretching exercises for each of the main leg muscle groups (quadriceps, hamstrings and triceps surae), followed by either 3 sets of 3 (short stretching treatment), or 3 sets of 5 tuck jumps (long stretching treatment), in a randomized crossover design with one week between treatments. Hip joint flexion was measured with a Lafayette goniometer before and after the 5-min warm-up, after stretching and 8 min after the tuck jumps, while counter movement jump (CMJ) performance was evaluated by an Ergojump contact platform, before and after the stretching treatment, as well as immediately after and 8 minutes after the tuck jumps. Three way ANOVA (condition, time, gender) revealed significant time (p < 0.001) and gender (p < 0.001) main effects for hip joint flexion, with no interaction between factors. Flexibility increased by 6. 8 ± 1.1% (p < 0.01) after warm-up and by another 5.8 ± 1.6% (p < 0.01) after stretching, while it remained increased 8 min after the tuck jumps. Women had greater ROM compared with men at all time points (125 ± 8° vs. 94 ± 4° p<0.01 at baseline), but the pattern of change in hip flexibility was not different between genders. CMJ performance was greater in men compared with women at all time points (38.2 ± 1.9 cm vs. 29.8 ± 1.2 cm p < 0.01 at baseline), but the percentage of change CMJ performance was not different between genders. CMJ performance remained unchanged throughout the short stretching protocol, while it decreased by 5.5 ± 0.9% (p < 0.01) after stretching in the long stretching protocol However, 8 min after the tuck jumps, CMJ performance was not different from the baseline value (p = 0.075). In conclusion, lower limb power may be decreased after long periods of stretching, but performance of explosive exercises may reverse this phenomenon.
    Journal of sports science & medicine 12/2012; 11(4):669-75. · 1.03 Impact Factor
  • Source
    • "When all studies (Crewther et al., 2011; Deutsch & Lloyd, 2008; Esformes, Cameron, & Bampouras, 2010; Gourgoulis, Aggeloussis, Kasimatis, Mavromatis , & Garas, 2003; Jensen & Ebben, 2003; Jones & Lees, 2003; Khamoui et al., 2009; Kilduff et al., 2007; Kilduff et al., 2008; Mitchell & Sale, 2011; "
    [Show abstract] [Hide abstract]
    ABSTRACT: Abstract The purpose of this meta-analytic review was to examine the extent and quality of research on the post-activation potentiation acute effect of rest interval manipulation on jumping performance. This manuscript adopted the recommendations from the Preferred Reporting Items for Systematic Reviews and Meta-Analyses Statement. Criteria eligibility included crossover, randomised, non-randomised and counterbalanced studies that observed the voluntary muscle action-induced post-activation potentiation on jumping performance. Fourteen studies selected by two independent raters were included in the analysis. The rest intervals involved ranges including 0-3, 4-7, 8-12 and ≥16 min. The results demonstrated medium effect sizes for rest intervals 0-3 and 8-12 min (-0.25, Confidence Interval (CI): -0.51 to 0.01 for 0-3 min; 0.24, CI: -0.02 to 0.49 for 8-12 min) and a small effect for other ranges (0.15, CI: -0.08 to 0.38 for 4-7 min; 0.07, CI: -0.21 to 0.24 for ≥16 min). There was no evidence of heterogeneity for sub-groups (I (2 )= 0%; P < 0.001) and no indication of publication bias (Egger's test, P = 0.179). While a rest interval of 0-3 min induced a detrimental effect on jump performance, the range including 8-12 min had a beneficial impact on jump height. Findings suggest that the rest interval manipulation seems to affect post-activation potentiation magnitude and jump height.
    Journal of Sports Sciences 11/2012; 31(5). DOI:10.1080/02640414.2012.738924 · 2.25 Impact Factor
Show more