Article

Antidepressants for neuropathic pain: a Cochrane review

Helsinki University Central Hospital, Department of Oncology, Helsinki, Finland.
Journal of neurology, neurosurgery, and psychiatry (Impact Factor: 5.58). 12/2010; 81(12):1372-3. DOI: 10.1136/jnnp.2008.144964
Source: PubMed
0 Followers
 · 
109 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: It has been shown that imipramine, a tricyclic antidepressant (TCA), is a potent analgesic agent. However, the effect of imipramine on visceral pain has not been extensively investigated. In the current study, our aim was to characterize the putative analgesic effect of intravenous imipramine on visceral pain in rats. Our second aim was to assess the involvement of serotonergic (5-HT2, 3, 4) and noradrenergic (α2A, 2B, 2C) receptor subtypes in this putative antinociceptive effect of imipramine. Male Sprague Dawley rats (250-300 g) were implanted with venous catheters for drug administration and implanted with enamelled nichrome electrodes for electromyography of the external oblique muscles. Noxious visceral stimulation was applied via by colorectal distension (CRD). The visceromotor responses (VMRs) to CRD were quantified electromyographically before and after imipramine administration at 5, 15, 30, 60, 90 and 120 min. In the antagonist groups, the agents were administered 10 min before imipramine. The administration of imipramine (5-40 mg/kg) produced a dose-dependent reduction in VMR. The administration of yohimbine (a nonselective α2-adrenoceptor antagonist, 1 mg/kg), BRL-44408 (an α2A-adrenoceptor antagonist, 1 mg/kg) or MK-912 (an α2C-adrenoceptor antagonist, 300 μg/kg) but not imiloxan (an α2B-adrenoceptor antagonist, 1 mg/kg) inhibited the antinociceptive effect of imipramine (20 mg/kg). Additionally, ketanserin (a 5-HT2 receptor antagonist, 0.5, 1, and 2 mg/kg) and GR113808 (a 5-HT4 receptor antagonist, 1 mg/kg) enhanced and ondansetron (a 5-HT3 receptor antagonist, 0.5, 1, and 2 mg/kg) failed to alter the imipramine-induced antinociceptive effect. Our data demonstrated that, in the CDR-induced rat visceral pain model, intravenous imipramine appeared to have antinociceptive potential and that α2A-/α2C-adrenoceptors and 5-HT2/5-HT4 receptors may be responsible for the antinociceptive effect of imipramine on visceral pain in rats.
    Pharmacology Biochemistry and Behavior 07/2014; DOI:10.1016/j.pbb.2014.02.017 · 2.82 Impact Factor
  • Source
    Herpesviridae - A Look Into This Unique Family of Viruses, 03/2012; , ISBN: 978-953-51-0186-4
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Tianeptine is an unusual tricyclic antidepressant drug. In this study, we aimed to investigate the antinociceptive effect of tianeptine on visceral pain in rats and to determine whether possible antinociceptive effect of tianeptine is mediated by serotonergic (5-HT(2,3)) and noradrenergic (α(1,2)) receptor subtypes. Male Sprague Dawley rats (250-300 g) were supplied with a venous catheter, for drug administrations, and enameled nichrome electrodes, for electromyography, at external oblique musculature. Colorectal distension (CRD) was employed as the noxious visceral stimulus and the visceromotor response (VMR) to CRD was quantified electromyographically before and 5, 15, 30, 60, 90 and 120 min after tianeptine administration. Antagonists were administered 10 min before tianeptine for their ability to change tianeptine antinociception. Intravenous administration of tianeptine (2.5-20 mg/kg) produced a dose-dependent reduction in VMR. Administration of 5-HT(3) receptor antagonist ondansetron (0.5, 1 and 2 mg/kg), but not 5-HT(2) receptor antagonist ketanserine (0.5, 1 and 2 mg/kg), reduced the antinociceptive effect of tianeptine (10mg/kg). In addition, administration of α(1)-adrenoceptor antagonist prazosin (1 mg/kg) or α(2)-adrenoceptor antagonist yohimbine (1 mg/kg) did not cause any significant effect on the tianeptine-induced antinociception. Our data indicate that intravenous tianeptine exerts a pronounced antinociception against CRD-induced visceral pain in rats, and suggests that the antinociceptive effect of tianeptine appears to be mediated in part by 5-HT(3) receptors, but does not involve 5-HT(2) receptors or α-adrenoceptors.
    European journal of pharmacology 02/2012; 681(1-3):44-9. DOI:10.1016/j.ejphar.2012.01.043 · 2.68 Impact Factor