Molecular imaging: current status and emerging strategies. Clin Radiol

Department of Radiology, Molecular Imaging Program at Stanford, Stanford University School of Medicine, Stanford, CA 94305-5424, USA.
Clinical Radiology (Impact Factor: 1.76). 07/2010; 65(7):500-16. DOI: 10.1016/j.crad.2010.03.011
Source: PubMed


In vivo molecular imaging has a great potential to impact medicine by detecting diseases in early stages (screening), identifying extent of disease, selecting disease- and patient-specific treatment (personalized medicine), applying a directed or targeted therapy, and measuring molecular-specific effects of treatment. Current clinical molecular imaging approaches primarily use positron-emission tomography (PET) or single photon-emission computed tomography (SPECT)-based techniques. In ongoing preclinical research, novel molecular targets of different diseases are identified and, sophisticated and multifunctional contrast agents for imaging these molecular targets are developed along with new technologies and instrumentation for multi-modality molecular imaging. Contrast-enhanced molecular ultrasound (US) with molecularly-targeted contrast microbubbles is explored as a clinically translatable molecular imaging strategy for screening, diagnosing, and monitoring diseases at the molecular level. Optical imaging with fluorescent molecular probes and US imaging with molecularly-targeted microbubbles are attractive strategies as they provide real-time imaging, are relatively inexpensive, produce images with high spatial resolution, and do not involve exposure to ionizing irradiation. Raman spectroscopy/microscopy has emerged as a molecular optical imaging strategy for ultrasensitive detection of multiple biomolecules/biochemicals with both in vivo and ex vivo versatility. Photoacoustic imaging is a hybrid of optical and US techniques involving optically-excitable molecularly-targeted contrast agents and quantitative detection of resulting oscillatory contrast agent movement with US. Current preclinical findings and advances in instrumentation, such as endoscopes and microcatheters, suggest that these molecular imaging methods have numerous potential clinical applications and will be translated into clinical use in the near future.

Download full-text


Available from: Marybeth Pysz, Apr 28, 2014
  • Source
    • "Recent advancements in biotechnology and nanotechnology have allowed the integration of molecular imaging and targeted therapy, also known as theranosis1. Molecular imaging involves the visualization of a specific molecular process, and it can be used to study disease progression or to monitor a therapeutic process2. A micron- or nanometer-sized molecular probe typically needs to be designed and utilized. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Plasmonic photothermal therapy (PPTT) using plasmonic nanoparticles as efficient photoabsorbing agents has been proposed previously. One critical step in PPTT is to effectively deliver gold nanoparticles into the cells. This study demonstrates that the delivery of gold nanorods (AuNRs) can be greatly enhanced by combining the following three mechanisms: AuNRs encapsulated in protein-shell microbubbles (AuMBs), molecular targeting, and sonoporation employing acoustic cavitation of microbubbles (MBs). Both in vitro and in vivo tests were performed. For molecular targeting, the AuMBs were modified with anti-VEGFR2. Once bound to the angiogenesis markers, the MBs were destroyed by ultrasound to release the AuNRs and the release was confirmed by photoacoustic measurements. Additionally, acoustic cavitation was induced during MB destruction for sonoporation (i.e., increase in transient cellular permeability). The measured inertial cavitation dose was positively correlated with the temperature increase at the tumor site. The quantity of AuNRs delivered into the cells was also determined by measuring the mass spectrometry and observed using third-harmonic-generation microscopy and two-photon fluorescence microscopy. A temperature increase of 20°C was achieved in vitro. The PPTT results in vivo also demonstrated that the temperature increase (>45°C) provided a sufficiently high degree of hyperthermia. Therefore, synergistic delivery of AuNRs was demonstrated.
    Scientific Reports 07/2014; 4:5685. DOI:10.1038/srep05685 · 5.58 Impact Factor
  • Source
    • "Molecular vascular imaging with PET can enable early detection of these changes, thereby decreasing the dependence to invasive biopsies or surgical procedures to characterize diseased tissues 11, 20, 23, 24, 40, 41. PET can detect tracer concentrations in the picomolar range, providing 4-5 mm resolution with clinical PET scanners and 1-2 mm with small animal PET scanners, and has been routinely used in clinical cancer patient management and preclinical research 42-48. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Atherosclerosis-related cardiovascular events are the leading causes of death in the industrialized world. Atherosclerosis develops insidiously and the initial manifestation is usually sudden cardiac death, stroke, or myocardial infarction. Molecular imaging is a valuable tool to identify the disease at an early stage before fatal manifestations occur. Among the various molecular imaging techniques, this review mainly focuses on positron emission tomography (PET) imaging of atherosclerosis. The targets and pathways that have been investigated to date for PET imaging of atherosclerosis include: glycolysis, cell membrane metabolism (phosphatidylcholine synthesis), integrin αvβ3, low density lipoprotein (LDL) receptors (LDLr), natriuretic peptide clearance receptors (NPCRs), fatty acid synthesis, vascular cell adhesion molecule-1 (VCAM-1), macrophages, platelets, etc. Many PET tracers have been investigated clinically for imaging of atherosclerosis. Early diagnosis of atherosclerotic lesions by PET imaging can help to prevent the premature death caused by atherosclerosis, and smooth translation of promising PET tracers into the clinic is critical to the benefit of patients.
    Theranostics 11/2013; 3(11):894-902. DOI:10.7150/thno.5506 · 8.02 Impact Factor
  • Source
    • "Molecular pre-clinical imaging is a major research tool which provides non-invasive in vivo information on cellular processes and allows longitudinal studies (Pysz et al 2010, Franc et al 2008, Kang and Chung 2008). In oncology, obtaining measurements of tumour characteristics is mandatory. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Respiratory motion can blur the tomographic reconstruction of positron emission tomography or single-photon emission computed tomography (SPECT) images, which subsequently impair quantitative measurements, e.g. in the upper abdomen area. Respiratory signal phase-based gated reconstruction addresses this problem, but deteriorates the signal-to-noise ratio (SNR) and other intensity-based quality measures. This paper proposes a 3D reconstruction method dedicated to micro-SPECT imaging of mice. From a 4D acquisition, the phase images exhibiting motion are identified and the associated list-mode data are discarded, which enables the reconstruction of a 3D image without respiratory artefacts. The proposed method allows a motion-free reconstruction exhibiting both satisfactory count statistics and accuracy of measures. With respect to standard 3D reconstruction (non-gated 3D reconstruction) without breathing motion correction, an increase of 14.6% of the mean standardized uptake value has been observed, while, with respect to a gated 4D reconstruction, up to 60% less noise and an increase of up to 124% of the SNR have been demonstrated.
    Physics in Medicine and Biology 04/2013; 58(8):2657-2674. DOI:10.1088/0031-9155/58/8/2657 · 2.76 Impact Factor
Show more