Longitudinal changes in medial temporal cortical thickness in normal subjects with the APOE-4 polymorphism.

David Geffen School of Medicine at UCLA, Center for Cognitive Neurosciences, Semel Institute, Los Angeles, CA 90095, USA.
NeuroImage (Impact Factor: 6.13). 10/2010; 53(1):37-43. DOI: 10.1016/j.neuroimage.2010.06.009
Source: PubMed

ABSTRACT People with the apolipoprotein-Eepsilon4 (APOE-4) genetic risk for Alzheimer's disease show morphologic differences in medial temporal lobe regions when compared to non-carriers of the allele. Using a high-resolution MRI and cortical unfolding approach, our aim was to determine the rate of cortical thinning among medial temporal lobe subregions over the course of 2 years. We hypothesized that APOE-4 genetic risk would contribute to longitudinal cortical thickness change in the subiculum and entorhinal cortex, regions preferentially susceptible to Alzheimer's disease related pathology. Thirty-two cognitively intact subjects, mean age 61 years, 16 APOE-4 carriers, 16 non-carriers, underwent baseline and follow-up MRI scans. Over this relatively brief interval, we found significantly greater cortical thinning in the subiculum and entorhinal cortex of APOE-4 carriers when compared to non-carriers of the allele. Average cortical thinning across all medial temporal lobe subregions combined was also significantly greater for APOE-4 carriers. This finding is consistent with the hypothesis that carrying the APOE-4 allele renders subjects at a higher risk for developing Alzheimer's disease.

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The ε4 allele of the apolipoprotein E (APOE4) is associated with an increased risk of developing Alzheimer's disease (AD). Hence, several studies have compared the brain characteristics of APOE4 carriers versus non-carriers in presymptomatic stages to determine early AD biomarkers. The present review provides an overview on APOE4-related brain changes in cognitively normal individuals, focusing on the main neuroimaging biomarkers for AD, i.e. cortical beta-amyloid (Aβ) deposition, hypometabolism and atrophy. The most consistent findings are observed with Aβ deposition as most studies report significantly higher cortical Aβ load in APOE4 carriers compared with non-carriers. Fluorodeoxyglucose-positron emission tomography studies are rare and tend to show hypometabolism in brain regions typically impaired in AD. Structural magnetic resonance imaging findings are the most numerous and also the most discrepant, showing atrophy in AD-sensitive regions in some studies but contradicting results as well. Altogether, this suggests a graded effect of APOE4, with a predominant effect on Aβ over brain structure and metabolism. Multimodal studies confirm this view and also suggest that APOE4 effects on brain structure and function are mediated by both Aβ-dependent and Aβ-independent pathological processes. Neuroimaging studies on asymptomatic APOE4 carriers offer relevant information to the understanding of early pathological mechanisms of the disease, although caution is needed as to whether APOE4 effects reflect AD pathological processes, and are representative of these effects in non-carriers.
    Neuropsychology Review 08/2014; 24(3). DOI:10.1007/s11065-014-9263-8 · 5.40 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Previous investigations into whether the APOE-ε4 allele exerts cognitive effects at midlife have been inconclusive. We have advanced a “cognitive phenotype” hypothesis arguing that the ε4 allele of the apolipoprotein E gene (APOE) is associated with lower efficiency of neuronal plasticity thereby resulting in poorer cognitive performance independently of the pathology of Alzheimer's disease (Greenwood et al., ). This hypothesis is best tested at midlife, prior to the neuron loss associated with AD diagnosis. This hypothesis predicts that the ε4 allele would alter cognition regardless of age through plasticity mechanisms, but would not induce longitudinal decline in midlife. The alternative “prodrome” hypothesis predicts that the APOE-ε4 allele would be associated with longitudinal cognitive decline as early as midlife due to prodromal effects of AD. We tested these hypotheses with a working memory task in a large cross-sectional sample of cognitively screened APOE-ε4 carriers and non-carriers and also in a small longitudinal sample over 3 years. The sample was divided into middle-aged (mean age 50, range 40–59) and older (mean age 69, range 60–84) individuals. Cross-sectionally, we observed that older, but not middle-aged, APOE-ε4 carriers had lower accuracy than ε4 non-carriers, mainly under the hardest discrimination condition. Longitudinally, we observed increases in accuracy in middle-aged APOE-ε4 carriers, suggesting a cognitive phenotype that includes ability to benefit from experience. We observed a longitudinal decrease in older APOE-ε4 carriers, suggesting an AD prodrome.
    Scandinavian Journal of Psychology 06/2014; 55(3). DOI:10.1111/sjop.12123 · 1.29 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Rationale and Objectives Differentiating mild cognitive impairment (MCI) and Alzheimer Disease (AD) from healthy aging remains challenging. This study aimed to explore the cerebral structural alterations of subjects with MCI or AD as compared to healthy elderly based on the individual and collective effects of cerebral morphologic indices using univariate and multivariate analyses. Materials and Methods T1-weighted images (T1WIs) were retrieved from Alzheimer Disease Neuroimaging Initiative database for 116 subjects who were categorized into groups of healthy aging, MCI, and AD. Analysis of covariance (ANCOVA) and multivariate analysis of covariance (MANCOVA) were performed to explore the intergroup morphologic alterations indexed by surface area, curvature index, cortical thickness, and subjacent white matter volume with age and sex controlled as covariates, in 34 parcellated gyri regions of interest (ROIs) for both cerebral hemispheres based on the T1WI. Statistical parameters were mapped on the anatomic images to facilitate visual inspection. Results Global rather than region-specific structural alterations were revealed in groups of MCI and AD relative to healthy elderly using MANCOVA. ANCOVA revealed that the cortical thickness decreased more prominently in entorhinal, temporal, and cingulate cortices and was positively correlated with patients' cognitive performance in AD group but not in MCI. The temporal lobe features marked atrophy of white matter during the disease dynamics. Significant intercorrelations were observed among the morphologic indices with univariate analysis for given ROIs. Conclusions Significant global structural alterations were identified in MCI and AD based on MANCOVA model with improved sensitivity. The intercorrelation among the morphologic indices may dampen the use of individual morphological parameter in featuring cerebral structural alterations. Decrease in cortical thickness is not reflective of the cognitive performance at the early stage of AD.
    Academic radiology 01/2014; DOI:10.1016/j.acra.2013.12.001 · 2.09 Impact Factor

Full-text (2 Sources)

Available from
May 30, 2014