Article

A cautionary note on using N-acetylcysteine as an antagonist to assess isothiocyanate-induced reactive oxygen species-mediated apoptosis.

Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC 20057, USA.
Analytical Biochemistry (Impact Factor: 2.58). 10/2010; 405(2):269-71. DOI: 10.1016/j.ab.2010.06.015
Source: PubMed

ABSTRACT N-Acetylcysteine (NAC) has been widely used in cell culture-based studies for the role of reactive oxygen species (ROS) generation in apoptosis induction by isothiocyanates (ITCs). Here we have demonstrated, using [(14)C]phenethyl ITC and [(14)C]sulforaphane, that NAC pretreatment significantly reduces ITC cellular uptake by conjugating with ITCs in the medium, suggesting that reduced uptake of ITCs, rather than the antioxidant activity of NAC itself, is responsible for the diminished downstream apoptotic effects. The study provides a cautionary note on the assay in studying mechanisms of apoptosis by ITCs and other electrophilic and thiol-reactive compounds.

0 Bookmarks
 · 
63 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Isothiocyanates are versatile cancer-preventive compounds. Evidence from animal studies indicates that the anticarcinogenic activities of ITCs involve all the major stages of tumor growth: initiation, promotion and progression. Epidemiological studies have also shown that dietary intake of ITCs is associated with reduced risk of certain human cancers. A number of mechanisms have been proposed for the chemopreventive activities of ITCs. To identify the molecular targets of ITCs is a first step to understand the molecular mechanisms of ITCs. Studies in recent years have shown that the covalent binding to certain protein targets by ITCs seems to play an important role in ITC-induced apoptosis and cell growth inhibition and other cellular effects. The knowledge gained from these studies may be used to guide future design and screen of better and more efficacious compounds. In this review, we intend to cover all potential protein targets of ITCs so far studied and summarize what are known about their binding sites and the potential biological consequences. In the end, we also offer discussions to shed light onto the relationship between protein binding and reactive oxygen species generation by ITCs.
    Carcinogenesis 06/2011; 32(10):1405-13. · 5.64 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Organic isothiocyanates (ITCs), which are characterized by the presence of an -N=C=S group, are among the most extensively studied cancer chemopreventive agents and show highly promising chemopreventive activities. Numerous studies have shown that ITCs can inhibit both carcinogenesis and cancer growth in a variety of animal models. Many cruciferous vegetables, which are commonly consumed by humans, are rich sources of these compounds. Of particular interest are their high bioavailability, their shared metabolic profile and their ability to target a wide array of cancer-related cellular proteins. This review is focused on discussing the molecular basis of these intriguing properties of ITCs, with a particular emphasis on the concept that cellular uptake and metabolism of ITCs and at least some of their major chemopreventive activities are all initiated through direct reaction of the carbon atom of the -N=C=S group of the ITCs with cysteine sulfhydryl groups of glutathione (GSH) and of proteins. This knowledge deepens our understanding about the biological activities of ITCs and may facilitate further research and development of these compounds for cancer prevention and treatment.
    Carcinogenesis 11/2011; 33(1):2-9. · 5.64 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Isothiocyanates, occurring in many dietary cruciferous vegetables, show interesting chemopreventive activities against several chronic-degenerative diseases, including cancer, cardiovascular diseases, neurodegeneration, diabetes. The electrophilic carbon residue in the isothiocyanate moiety reacts with biological nucleophiles and modification of proteins is recognized as a key mechanism underlying the biological activity of isothiocyanates. The nuclear factor-erythroid-2-related factor 2 system, which orchestrates the expression of a wide array of antioxidant genes, plays a role in the protective effect of isothiocyanates against almost all the pathological conditions reported above. Recent emerging findings suggest a further common mechanism. Chronic inflammation plays a central role in many human diseases and isothiocyanates inhibit the activity of many inflammation components, suppress cyclooxygenase 2, and irreversibly inactivate the macrophage migration inhibitory factor. Due to their electrophilic reactivity, some isothiocyanates are able to form adducts with DNA and induce gene mutations and chromosomal aberrations. DNA damage has been demonstrated to be involved in the pathogenesis of various chronic-degenerative diseases of epidemiological relevance. Thus, the genotoxicity of the isothiocyanates should be carefully considered. In addition, the dose-response relationship for genotoxic compounds does not suggest evidence of a threshold. Thus, chemicals that are genotoxic pose a greater potential risk to humans than non-genotoxic compounds. Dietary consumption levels of isothiocyanates appear to be several orders of magnitude lower than the doses used in the genotoxicity studies and thus it is highly unlikely that such toxicities would occur in humans. However, the beneficial properties of isothiocyanates stimulated an increase of dietary supplements and functional foods with highly enriched isothiocyanate concentrations on the market. Whether such concentrations may exert a potential health risk cannot be excluded with certainty and an accurate evaluation of the toxicological profile of isothiocyanates should be prompted before any major increase in their consumption be recommended or their clinical use suggested.
    Mutation Research/Fundamental and Molecular Mechanisms of Mutagenesis 12/2011; 750(2):107-31. · 3.90 Impact Factor

Full-text

View
0 Downloads
Available from