Comparative airway inflammatory response of normal volunteers to ozone and lipopolysaccharide challenge

Department of Pediatrics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-7310, USA.
Inhalation Toxicology (Impact Factor: 2.26). 07/2010; 22(8):648-56. DOI: 10.3109/08958371003610966
Source: PubMed

ABSTRACT Ozone and lipopolysaccharide (LPS) are environmental pollutants with adverse health effects noted in both healthy and asthmatic individuals. The authors and others have shown that inhalation of ozone and LPS both induce airway neutrophilia. Based on these similarities, the authors tested the hypothesis that common biological factors determine response to these two different agents. Fifteen healthy, nonasthmatic volunteers underwent a 0.4 part per million ozone exposure for 2 h while performing intermittent moderate exercise. These same subjects underwent an inhaled LPS challenge with 20,000 LPS units of Clinical Center Reference LPS, with a minimum of 1 month separating these two challenge sessions. Induced sputum was obtained 24 h before and 4-6 h after each exposure session. Sputum was assessed for total and differential cell counts and expression of cell surface proteins as measured by flow cytometry. Sputum supernatants were assayed for cytokine concentration. Both ozone and LPS challenge augmented sputum neutrophils and subjects' responses were significantly correlated (R = .73) with each other. Ozone had greater overall influence on cell surface proteins by modifying both monocytes (CD14, human leukocyte antigen [HLA]-DR, CD11b) and macrophages (CD11b, HLA-DR) versus LPS where CD14 and HLA-DR were modified only on monocytes. However, LPS significantly increased interleukin (IL)-1beta, IL-6, and tumor necrosis factor (TNF)-alpha, with no significant increases seen after ozone challenge. Ozone and LPS exposure in healthy volunteers induce similar neutrophil responses in the airways; however, downstream activation of innate immune responses differ, suggesting that oxidant versus bacterial air pollutants may be mediated by different mechanisms.

Download full-text


Available from: David Diaz-Sanchez, Feb 18, 2014
9 Reads
  • Source
    • "The main focus was the analysis of induced sputum. Compared with a previous study that used the same dose of LPS [9], the neutrophilic response was more pronounced. The 6 h time point after LPS inhalation has been used frequently to assess the inflammatory effect; however, there are conflicting results with respect to the maximal effect. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Inhalation of endotoxin (LPS) induces a predominantly neutrophilic airway inflammation and has been used as model to test the anti-inflammatory activity of novel drugs. In the past, a dose exceeding 15–50 μg was generally needed to induce a sufficient inflammatory response. For human studies, regulatory authorities in some countries now request the use of GMP-grade LPS, which is of limited availability. It was therefore the aim of this study to test the effect and reproducibility of a low-dose LPS challenge (20,000 E.U.; 2 μg) using a flow- and volume-controlled inhalation technique to increase LPS deposition. Two to four weeks after a baseline sputum induction, 12 non-smoking healthy volunteers inhaled LPS on three occasions, separated by at least 4 weeks. To modulate the inflammatory effect of LPS, a 5-day PDE4 inhibitor (Roflumilast) treatment preceded the last challenge. Six hours after each LPS inhalation, sputum induction was performed. The low-dose LPS inhalation was well tolerated and increased the mean percentage of sputum neutrophils from 25% to 72%. After the second LPS challenge, 62% neutrophils and an increased percentage of monocytes were observed. The LPS induced influx of neutrophils and the cumulative inflammatory response compared with baseline were reproducible. Treatment with Roflumilast for 5 days did not have a significant effect on sputum composition. The controlled inhalation of 2 μg GMP-grade LPS is sufficient to induce a significant neutrophilic airway inflammation in healthy volunteers. Repeated low-dose LPS challenges potentially result in a small shift of the neutrophil/monocyte ratio; however, the cumulative response is reproducible, enabling the use of this model for “proof-of-concept” studies for anti-inflammatory compounds during early drug development. Trial registration NCT01400568
    BMC Pulmonary Medicine 03/2013; 13(1):19. DOI:10.1186/1471-2466-13-19 · 2.40 Impact Factor
  • Source
    • "Therefore, we wanted to evaluate how exposure to ozone affects viral entry and replication. We chose to examine influenza infection in human NECs exposed to 0.4ppm ozone for 4 h, based on our group's recent in vivo [12], [56] and in vitro [9] studies. To assess the effects of ozone on NECs, we determined LDH and IL-6 levels in basolateral supernatants as markers of cytotoxicity and inflammation, respectively (Figure 1A and 1B). "
    [Show abstract] [Hide abstract]
    ABSTRACT: Exposure to oxidant air pollution is associated with increased respiratory morbidities and susceptibility to infections. Ozone is a commonly encountered oxidant air pollutant, yet its effects on influenza infections in humans are not known. The greater Mexico City area was the primary site for the spring 2009 influenza A H1N1 pandemic, which also coincided with high levels of environmental ozone. Proteolytic cleavage of the viral membrane protein hemagglutinin (HA) is essential for influenza virus infectivity. Recent studies suggest that HA cleavage might be cell-associated and facilitated by the type II transmembrane serine proteases (TTSPs) human airway trypsin-like protease (HAT) and transmembrane protease, serine 2 (TMPRSS2), whose activities are regulated by antiproteases, such as secretory leukocyte protease inhibitor (SLPI). Based on these observations, we sought to determine how acute exposure to ozone may modulate cellular protease/antiprotease expression and function, and to define their roles in a viral infection. We utilized our in vitro model of differentiated human nasal epithelial cells (NECs) to determine the effects of ozone on influenza cleavage, entry, and replication. We show that ozone exposure disrupts the protease/antiprotease balance within the airway liquid. We also determined that functional forms of HAT, TMPRSS2, and SLPI are secreted from human airway epithelium, and acute exposure to ozone inversely alters their expression levels. We also show that addition of antioxidants significantly reduces virus replication through the induction of SLPI. In addition, we determined that ozone-induced cleavage of the viral HA protein is not cell-associated and that secreted endogenous proteases are sufficient to activate HA leading to a significant increase in viral replication. Our data indicate that pre-exposure to ozone disrupts the protease/antiprotease balance found in the human airway, leading to increased influenza susceptibility.
    PLoS ONE 05/2012; 7(4):e35108. DOI:10.1371/journal.pone.0035108 · 3.23 Impact Factor
  • Source
    • "(A) Proportions of sputum dendritic cells was significantly higher in dust-mite sensitive allergic individuals (N=29) compared to healthy non-allergic volunteers (N=44). (B) CD14 and HLA-DR expression was significantly higher on sputum monocytes from healthy volunteers 4hours after a 2-hr inhalation exposure to 0.4 ppm ozone (adapted from (Hernandez et al. 2010). (C) There was a significant (p=0.0001) "
    [Show abstract] [Hide abstract]
    ABSTRACT: The evaluation of sputum leukocytes by flow cytometry (FCM) is an opportunity to assess characteristics of cells residing in the central airways, yet it is hampered by certain inherent properties of sputum including mucus and large amounts of contaminating cells and debris. To develop a gating strategy based on specific antibody panels in combination with light scatter properties for flow cytometric evaluation of sputum cells. Healthy and mild asthmatic volunteers underwent sputum induction. Manually selected mucus "plug" material was treated with dithiothreitol, filtered and total leukocytes acquired. Multicolor FCM was performed using specific gating strategies based on light scatter properties, differential expression of CD45 and cell lineage markers to discriminate leukocytes from squamous epithelial cells and debris. The combination of forward scatter and CD45 expression reliably segregated sputum leukocytes from contaminating squamous epithelial cells and debris. Overlap of major leukocyte populations (neutrophils, macrophages/monocytes) required the use of specific antibodies (e.g. CD16, CD64, CD14, HLA-DR) that differentiated granulocytes from monocytes and macrophages. These gating strategies allowed identification of small populations of eosinophils, CD11c+ myeloid dendritic cells, B-cells and natural killer cells. Multicolor FCM can be successfully applied to sputum samples to identify and characterize leukocyte populations residing on the surfaces of the central airways. This research describes detailed methods to overcome difficulties associated with FCM of sputum samples, which previously has been lacking in the literature. FCM of sputum samples can provide valuable information on inflammation and immunological response elements in the bronchial airways for both clinical diagnostic and research applications and can be a useful tool in inhalation toxicology for assessing health effects of inhaled environmental pollutants.
    Inhalation Toxicology 06/2011; 23(7):392-406. DOI:10.3109/08958378.2011.575568 · 2.26 Impact Factor
Show more