Article

Comparative airway inflammatory response of normal volunteers to ozone and lipopolysaccharide challenge.

Department of Pediatrics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-7310, USA.
Inhalation Toxicology (Impact Factor: 2.34). 07/2010; 22(8):648-56. DOI: 10.3109/08958371003610966
Source: PubMed

ABSTRACT Ozone and lipopolysaccharide (LPS) are environmental pollutants with adverse health effects noted in both healthy and asthmatic individuals. The authors and others have shown that inhalation of ozone and LPS both induce airway neutrophilia. Based on these similarities, the authors tested the hypothesis that common biological factors determine response to these two different agents. Fifteen healthy, nonasthmatic volunteers underwent a 0.4 part per million ozone exposure for 2 h while performing intermittent moderate exercise. These same subjects underwent an inhaled LPS challenge with 20,000 LPS units of Clinical Center Reference LPS, with a minimum of 1 month separating these two challenge sessions. Induced sputum was obtained 24 h before and 4-6 h after each exposure session. Sputum was assessed for total and differential cell counts and expression of cell surface proteins as measured by flow cytometry. Sputum supernatants were assayed for cytokine concentration. Both ozone and LPS challenge augmented sputum neutrophils and subjects' responses were significantly correlated (R = .73) with each other. Ozone had greater overall influence on cell surface proteins by modifying both monocytes (CD14, human leukocyte antigen [HLA]-DR, CD11b) and macrophages (CD11b, HLA-DR) versus LPS where CD14 and HLA-DR were modified only on monocytes. However, LPS significantly increased interleukin (IL)-1beta, IL-6, and tumor necrosis factor (TNF)-alpha, with no significant increases seen after ozone challenge. Ozone and LPS exposure in healthy volunteers induce similar neutrophil responses in the airways; however, downstream activation of innate immune responses differ, suggesting that oxidant versus bacterial air pollutants may be mediated by different mechanisms.

0 Followers
 · 
97 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: Abstract Background: In healthy nonsmokers, inhaled endotoxin [lipopolysaccharide (LPS)] challenge induces airway neutrophilia and modifies innate immune responses, but the effect on mucociliary clearance (MCC), a key host defense response, is unknown. Although smokers are chronically exposed to LPS through inhaled tobacco smoke, the acute effect of inhaled LPS on both MCC and airway inflammation is also unknown. The purpose of this study was to determine the effect of inhaled LPS on MCC in nonsmokers and mild smokers with normal pulmonary function. Methods: We performed an open-label inhalational challenge with 20,000 endotoxin units in healthy adult nonsmokers (n=18) and young adult, mild smokers (n=12). At 4 hr post LPS challenge, we measured MCC over a period of 2 hr, followed by sputum induction to assess markers of airway inflammation. Results: No significant changes in spirometry occurred in either group following LPS challenge. Following LPS, MCC was significantly (p<0.05) slowed in nonsmokers, but not in smokers [MCC=10±9% (challenge) vs. 15±8% (baseline), MCC=14±9% (challenge) vs. 16±10% (baseline), respectively]. Both groups showed a significant (p<0.05) increase in sputum neutrophils 6 hr post LPS challenge versus baseline. Although there was no correlation between the increased neutrophilia and depressed MCC post LPS in the nonsmokers, baseline neutrophil concentration predicted the LPS-induced decrease in MCC in the nonsmokers, i.e., lower baseline neutrophil concentration was associated with greater depression in MCC with LPS challenge (p<0.05). Conclusions: These data show that a mild exposure to endotoxin acutely slows MCC in healthy nonsmokers. MCC in mild smokers is unaffected by mild endotoxin challenge, likely due to preexisting effects of cigarette smoke on their airway epithelium.
    Journal of Aerosol Medicine and Pulmonary Drug Delivery 02/2014; 27(6). DOI:10.1089/jamp.2013.1089 · 2.40 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: This review will discuss methodologies and applicability of key inflammatory models of respiratory disease in proof of concept or proof of efficacy clinical studies. In close relationship with these models, induced sputum and inflammatory cell counts will be addressed for phenotype-directed drug development. Additionally, important regulatory aspects regarding noninvestigational medicinal products used in bronchial challenges or clinical inflammatory models of respiratory disease will be highlighted. The recognition of an ever increasing number of phenotypes and endotypes within conditions such as asthma and chronic obstructive pulmonary disease urges phenotyping of study populations already in early clinical phases of drug development. Apart from the choice of a relevant disease model, recent studies show that especially targeted therapies need to be tested in well defined disease subsets for adequate efficacy assessment. Noninvasive biomarkers, especially sputum inflammatory cell counts, aid phenotyping and are useful outcome measures for novel, targeted therapies. Disease phenotyping becomes increasingly important for efficient and cost-effective drug development and subsequent disease management. Inflammatory models of respiratory disease combined with sputum biomarkers are important tools in this approach.
    Current opinion in pulmonary medicine 11/2013; DOI:10.1097/MCP.0000000000000013 · 2.96 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Asthma with neutrophil predominance is challenging to treat with corticosteroids. Novel treatment options for asthma include those that target innate immune activity. Recent literature has indicated a significant role for IL-1β in both acute and chronic neutrophilic asthma.
    Journal of Allergy and Clinical Immunology 09/2014; 135(2). DOI:10.1016/j.jaci.2014.07.039 · 11.25 Impact Factor

Full-text (2 Sources)

Download
16 Downloads
Available from
May 31, 2014