Circulating plastic adherent mesenchymal stem cells in aged hip fracture patients

Orthopaedic Research Unit, Department of Orthopaedic Research and Traumatology, Turku University Hospital and University of Turku, Turku, Finland.
Journal of Orthopaedic Research (Impact Factor: 2.97). 12/2010; 28(12):1634-42. DOI: 10.1002/jor.21167
Source: PubMed

ABSTRACT We examined the presence of circulating plastic adherent multipotent mesenchymal stem cells (MSCs) in fracture patients. Three patient groups (n = 10-18) were evaluated, including elderly females with a femoral neck fracture treated with cemented hemiarthroplasty, an age- and sex-matched group with hip osteoarthritis (OA) treated with cemented total hip arthroplasty (THA), and younger adults with surgically treated lower extremity fractures. The presence of circulating MSCs pre- and postoperatively was compared to bone marrow (BM) MSCs from the same subjects. Criteria for identifying MSCs included cell surface markers (CD105+, CD73+, CD90+, CD45-, CD14-), proliferation through several passages as well as osteogenic, chondrogenic, and adipogenic differentiation. Plastic adherent MSCs were found in peripheral blood (PB) from 22% of hip fracture patients, 46% of younger fracture patients, and in none of 63 pre- and postmenopausal women with hip OA. When detectable, circulating MSCs appeared between 39 and 101 h after fracture. PB derived MSCs did not differ from BM derived MSCs, except for a small population (<15%) of CD34+ cells among PB derived MSCs. This initial study indicates mobilization of MSCs into the circulation in response to fracture, even in very old patients, while circulating MSCs were not detectable before or after elective THA.

1 Follower
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Despite recent advances in bone tissue engineering, efficient bone formation and vascularization remains a challenge for clinical applications. The aim of this study was to investigate if the osteoblastic differentiation of human mesenchymal stromal cells (MSCs) can be enhanced by co-culturing them with peripheral blood (PB) mononuclear cells (MNCs), with and without vascular endothelial growth factor (VEGF), a coupling factor of bone formation and angiogenesis. Human bone marrow (BM) derived MSCs were co-cultured with PB-MNCs in osteogenic medium with or without VEGF. Osteoblastic differentiation and mineral deposition were studied by staining for alkaline phosphatase (ALP), and von Kossa, respectively, and measurements for ALP activity and calcium concentration (Ca). Cell proliferation was assayed with Alamar blue. The mechanism(s) were further studied by Transwell(®) cell culture experiments. Both ALP and mineralization (von Kossa and Ca) were significantly higher in the MSC-MNC co-cultures compared to plain MSC cultures. VEGF alone had no effect on osteoblastic differentiation of MSCs, but further enhanced differentiation in co-culture settings. The mechanism was shown to require cell-cell contact between MSCs and MNCs and the factors contributing to further differentiation appear to be soluble. No differences were observed in cell proliferation. Our study demonstrates that the in vitro ALP activity and mineralization of human BM-MSCs is more efficient in the presence of PB-MNCs, and exogenously added VEGF further enhances the stimulatory effect. This indicates that PB-MNCs could be a potential cell source in development of co-culture systems for novel tissue engineering applications for enhanced bone healing. Level IV. Experimental research study. Copyright © 2015 Elsevier Masson SAS. All rights reserved.
    Orthopaedics & Traumatology Surgery & Research 03/2015; 101(3). DOI:10.1016/j.otsr.2015.01.014 · 1.17 Impact Factor
  • Source
    Cytotherapy 04/2014; 16(4):S66. DOI:10.1016/j.jcyt.2014.01.242 · 3.10 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Mesenchymal stromal cells (MSCs) are considered to be promising agents for the treatment of immunological disease. Although originally identified as precursor cells for mesenchymal lineages, in vitro studies have demonstrated that MSCs possess diverse immune regulatory capacities. Pre-clinical models have shown beneficial effects of MSCs in multiple immunological diseases and a number of phase 1/2 clinical trials carried out so far have reported signs of immune modulation after MSC infusion. These data indicate that MSCs play a central role in the immune response. This raises the academic question whether MSCs are immune cells or whether they are tissue precursor cells with immunoregulatory capacity. Correct understanding of the immunological properties and origin of MSCs will aid in the appropriate and safe use of the cells for clinical therapy. In this review the whole spectrum of immunological properties of MSCs is discussed with the aim of determining the position of MSCs in the immune system.
    Arthritis research & therapy 01/2015; 17(1):88. DOI:10.1186/s13075-015-0596-3 · 4.12 Impact Factor


Available from
Jun 2, 2014