Article

Live optical projection tomography.

EMBL-CRG Systems Biology Program; Centre for Genomic Regulation; UPF; Barcelona, Spain; Istituciô Catalana de Recerca i Estudis Avançats; Barcelona, Spain.
Organogenesis (Impact Factor: 2.28). 10/2009; 5(4):211-6. DOI: 10.4161/org.5.4.10426
Source: PubMed

ABSTRACT Optical projection tomography (OPT) is a technology ideally suited for imaging embryonic organs. We emphasize here recent successes in translating this potential into the field of live imaging. Live OPT (also known as 4D OPT, or time-lapse OPT) is already in position to accumulate good quantitative data on the developmental dynamics of organogenesis, a prerequisite for building realistic computer models and tackling new biological problems. Yet, live OPT is being further developed by merging state-of-the-art mouse embryo culture with the OPT system. We discuss the technological challenges that this entails and the prospects for expansion of this molecular imaging technique into a wider range of applications.

1 Bookmark
 · 
95 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: A new technique termed Helical Optical Projection Tomography (hOPT) has been developed with the aim to overcome some of the limitations of current 3D optical imaging techniques. hOPT is based on Optical Projection Tomography (OPT) with the major difference that there is a translation of the sample in the vertical direction during the image acquisition process, requiring a new approach to image reconstruction. Contrary to OPT, hOPT makes possible to obtain 3D-optical images of intact long samples without imposing limits on the sample length. This has been tested using hOPT to image long murine tissue samples such as spinal cords and large intestines. Moreover, 3D-reconstructed images of the colon of DSS-treated mice, a model for Inflammatory Bowel Disease, allowed the identification of the structural alterations. Finally, the geometry of the hOPT device facilitates the addition of a Selective Plane Illumination Microscopy (SPIM) arm, providing the possibility of delivering high resolution images of selected areas together with complete volumetric information.
    Optics Express 11/2013; 21(44):25912-25925. · 3.55 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Optical projection tomography (OPT) is an imaging modality that has, in the last decade, answered numerous biological questions owing to its ability to view gene expression in 3 dimensions (3D) at high resolution for samples up to several cm(3). This has increased demand for a cabinet OPT system, especially for mouse embryo phenotyping, for which OPT was primarily designed for. The Medical Research Council (MRC) Technology group (UK) released a commercial OPT system, constructed by Skyscan, called the Bioptonics OPT 3001 scanner that was installed in a limited number of locations. The Bioptonics system has been discontinued and currently there is no commercial OPT system available. Therefore, a few research institutions have built their own OPT system, choosing parts and a design specific to their biological applications. Some of these custom built OPT systems are preferred over the commercial Bioptonics system, as they provide improved performance based on stable translation and rotation stages and up to date CCD cameras coupled with objective lenses of high numerical aperture, increasing the resolution of the images. Here, we present a detailed description of a custom built OPT system that is robust and easy to build and install. Included is a hardware parts list, instructions for assembly, a description of the acquisition software and a free download site, and methods for calibration. The described OPT system can acquire a full 3D data set in 10 minutes at 6.7 micron isotropic resolution. The presented guide will hopefully increase adoption of OPT throughout the research community, for the OPT system described can be implemented by personnel with minimal expertise in optics or engineering who have access to a machine shop.
    PLoS ONE 01/2013; 8(9):e73491. · 3.53 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The immense challenge of annotating the entire mouse genome has stimulated the development of cutting-edge imaging technologies in a drive for novel information. These techniques promise to improve understanding of the genes involved in embryo development, at least one third of which have been shown to be essential. Aligning advanced imaging technologies with biological needs will be fundamental to maximising the number of phenotypes discovered in the coming years. International efforts are underway to meet this challenge through an integrated and sophisticated approach to embryo phenotyping. We review rapid advances made in the imaging field over the past decade and provide a comprehensive examination of the relative merits of current and emerging techniques. The aim of this review is to provide a guide to state-of-the-art embryo imaging that will enable informed decisions as to which technology to use and fuel conversations between expert imaging laboratories, researchers, and core mouse production facilities.
    Trends in Genetics 09/2013; · 9.77 Impact Factor

Full-text (2 Sources)

Download
13 Downloads
Available from
May 21, 2014