Article

Phase I Dose Finding Studies of Obatoclax (GX15-070), a Small Molecule Pan-BCL-2 Family Antagonist, in Patients with Advanced Solid Tumors or Lymphoma

Lombardi Cancer Center, Georgetown Medical Center, 3800 Reservoir Road NW, Washington, DC 20007-2113, USA.
Clinical Cancer Research (Impact Factor: 8.19). 08/2010; 16(15):4038-45. DOI: 10.1158/1078-0432.CCR-10-0822
Source: PubMed

ABSTRACT Two phase I, single-agent studies were conducted to determine the dose and regimen of obatoclax, an antagonist of all BCL-2 antiapoptotic proteins, for evaluation in phase II trials. The two studies, GX001 and GX005, evaluated the safety and tolerability of weekly 1-hour and 3-hour infusions of obatoclax, respectively.
Eligible patients in both studies were adults with solid tumor or lymphoma and performance status 0-1 for whom standard therapies were not appropriate. In the GX001 study an accelerated dose titration design was initially used with subsequent cohorts of three to six patients with 40% dose increments between levels. In the GX005 study three to six patients entered at each dose level with 40% dose increments between levels.
Thirty-five patients were enrolled in studies GX001 (n = 8) and GX005 (n = 27). Clinically significant central nervous system (CNS) toxicity was observed using the 1-hour infusion schedule. The obatoclax maximum tolerated dose (MTD) in GX001 was 1.25 mg/m(2) due to these infusional CNS events. The 3-hour infusion schedule studied in GX005 had improved tolerability, and the obatoclax MTD was 20 mg/m(2). One patient in GX005 with relapsed non-Hodgkin's lymphoma achieved partial response of 2 months' duration, and one patient with relapsed non-Hodgkin's lymphoma had stable disease for 18 months.
The 1-hour infusion schedule of obatoclax was associated with neuropsychiatric dose-limiting toxicities at relatively low doses (MTD, 1.25 mg/m(2)). The 3-hour i.v. infusion of obatoclax administered once weekly to patients with solid tumors was better tolerated (MTD, 20 mg/m(2)), and evidence of clinical activity was observed.

0 Followers
 · 
88 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Obatoclax, a pan-Bcl2 inhibitor, shows antitumor activities in various solid malignancies. Bcl2-deficient mice have shown the importance of Bcl2 in osteoclasts, as the bone mass of the mice was increased by the induced apoptosis of osteoclasts. Despite the importance of Bcl2, the effects of obatoclax on the proliferation and differentiation of osteoclast precursors have not been studied extensively. Here, we describe the anti-proliferative effects of obatoclax on osteoclast precursors and its negative role on fusion of the cells. Stimulation with low doses of obatoclax significantly suppressed the proliferation of osteoclast precursors in a dose-dependent manner while the apoptosis was markedly increased. Its stimulation was sufficient to block the activation of ERK MAP kinase by RANKL. The same was true when PD98059, an ERK inhibitor, was administered to osteoclast precursors. The activation of JNK1/2 and p38 MAP kinase, necessary for osteoclast differentiation, by RANKL was not affected by obatoclax. Interestingly, whereas the number of TRAP-positive mononuclear cells was increased by both obatoclax and PD98059, fused, multinucleated cells larger than 100 m in diameter containing more than 20 nuclei were completely reduced. Consistently, obatoclax failed to regulate the expression of osteoclast marker genes, including c-Fos, TRAP, RANK and CtsK. Instead, the expression of DC-STAMP and Atp6v0d2, genes that regulate osteoclast fusion, by RANKL was significantly abrogated by both obatoclax and PD98059. Taken together, these results suggest that obatoclax down-regulates the proliferation and fusion of osteoclast precursors through the inhibition of the ERK1/2 MAP kinase pathway.
  • [Show abstract] [Hide abstract]
    ABSTRACT: BH3 mimetics such as ABT-263 induce apoptosis in a subset of cancer models. However, these drugs have shown limited clinical efficacy as single agents in small-cell lung cancer (SCLC) and other solid tumor malignancies, and rational combination strategies remain underexplored. To develop a novel therapeutic approach, we examined the efficacy of ABT-263 across >500 cancer cell lines, including 311 for which we had matched expression data for select genes. We found that high expression of the proapoptotic gene Bcl2-interacting mediator of cell death (BIM) predicts sensitivity to ABT-263. In particular, SCLC cell lines possessed greater BIM transcript levels than most other solid tumors and are among the most sensitive to ABT-263. However, a subset of relatively resistant SCLC cell lines has concomitant high expression of the antiapoptotic myeloid cell leukemia 1 (MCL-1). Whereas ABT-263 released BIM from complexes with BCL-2 and BCL-XL, high expression of MCL-1 sequestered BIM released from BCL-2 and BCL-XL, thereby abrogating apoptosis. We found that SCLCs were sensitized to ABT-263 via TORC1/2 inhibition, which led to reduced MCL-1 protein levels, thereby facilitating BIM-mediated apoptosis. AZD8055 and ABT-263 together induced marked apoptosis in vitro, as well as tumor regressions in multiple SCLC xenograft models. In a Tp53; Rb1 deletion genetically engineered mouse model of SCLC, the combination of ABT-263 and AZD8055 significantly repressed tumor growth and induced tumor regressions compared with either drug alone. Furthermore, in a SCLC patient-derived xenograft model that was resistant to ABT-263 alone, the addition of AZD8055 induced potent tumor regression. Therefore, addition of a TORC1/2 inhibitor offers a therapeutic strategy to markedly improve ABT-263 activity in SCLC.
    Proceedings of the National Academy of Sciences 03/2015; 112(11). DOI:10.1073/pnas.1411848112 · 9.81 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Pediatric hepatoblastoma (HB) is commonly treated by neoadjuvant chemotherapy and surgical tumor resection according to international multicenter trial protocols. Complete tumor resection is essential and survival rates up to 95% have now been achieved in those tumors classified as standard-risk HB. Drug resistance and occurrence of metastases remain the major challenges in the treatment of HB, especially in high-risk tumors. These conditions urgently require the development of alternative therapeutic strategies. One of those alternatives is the modulation of apoptosis in HB cells. HBs regularly overexpress anti-apoptotic proteins of the Bcl-family in comparison to healthy liver tissue. This fact may contribute to the development of chemoresistance of HB cells. Synthetic small inhibitory molecules with BH3-mimetic effects, such as ABT-737 and obatoclax, enhance the susceptibility of tumor cells to different cytotoxic drugs and thereby affect initiator proteins of the apoptosis cascade via the intrinsic pathway. Besides additive effects on HB cell viability when used in combination with cytotoxic drugs, BH3-mimetics also play a role in preventing metastasation by reducing adhesion and inhibiting cell migration abilities. Presumably, including additive BH3-mimetic drugs into existing therapeutic regimens in HB patients might allow dose reduction of established cytotoxic drugs and thereby associated immanent side effects, while maintaining the antitumor activity. Furthermore, reduction of tumor growth and inhibition of tumor cell dissemination may facilitate complete surgical tumor resection, which is mandatory in this tumor type resulting in improved survival rates in high-risk HB. Currently, there are phase I and phase II clinical trials in several cancer entities using this potential target. This paper reviews the available literature regarding the use of BH3-mimetic drugs as single agents or in combination with chemotherapy in various malignancies and focuses on results in HB cells.
    International Journal of Molecular Sciences 02/2015; 16(2):4190-4208. DOI:10.3390/ijms16024190 · 2.34 Impact Factor