Article

Cognitive decline is associated with reduced reelin expression in the entorhinal cortex of aged rats.

Department of Psychological and Brain Sciences, Johns Hopkins University, Baltimore, MD 21218, USA.
Cerebral Cortex (Impact Factor: 8.31). 02/2011; 21(2):392-400. DOI: 10.1093/cercor/bhq106
Source: PubMed

ABSTRACT Brain regions and neural circuits differ in their vulnerability to changes that occur during aging and in age-related neurodegenerative diseases. Among the areas that comprise the medial temporal lobe memory system, the layer II neurons of the entorhinal cortex, which form the perforant path input to the hippocampal formation, exhibit early alterations over the course of aging Reelin, a glycoprotein implicated in synaptic plasticity, is expressed by entorhinal cortical layer II neurons. Here, we report that an age-related reduction in reelin expression in the entorhinal cortex is associated with cognitive decline. Using immunohistochemistry and in situ hybridization, we observed decreases in the number of Reelin-immunoreactive cells and reelin messenger RNA expression in the lateral entorhinal cortex of aged rats that are cognitively impaired relative to young adults and aged rats with preserved cognitive abilities. The lateral entorhinal cortex of aged rats with cognitive impairment also exhibited changes in other molecular markers, including increased accumulation of phosphorylated tau and decreased synaptophysin immunoreactivity. Taken together, these findings suggest that reduced reelin expression, emanating from layer II entorhinal neurons, may contribute to network dysfunction that occurs during memory loss in aging.

0 Followers
 · 
100 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Epigenetic modifications of chromatin structure provide a mechanistic interface for gene-environment interactions that impact the individualization of health trajectories across the lifespan. A growing body of research indicates that dysfunctional epigenetic regulation contributes to poor cognitive outcomes among aged populations. Here we review neuroepigenetic research as it relates to cognitive aging, focusing specifically on memory function mediated by the hippocampal system. Recent work that differentiates epigenetic contributions to chronological aging from influences on mindspan, or the preservation of normal cognitive abilities across the lifespan, is also highlighted. Together, current evidence indicates that while age-related memory impairment is associated with dysfunction in the coordinated regulation of chromatin modification, animal models that show individual differences in cognitive outcome underscore the enormous mechanistic complexity that surrounds epigenetic dynamics in the aged hippocampus.
    Learning & memory (Cold Spring Harbor, N.Y.) 10/2014; 21(10):569-574. DOI:10.1101/lm.033506.113 · 4.38 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Many animal and human studies indicated that dietary ω-3 fatty acids could have beneficial roles on brain development, memory, and learning. However, the exact mechanisms involved are far from being clearly understood, especially for α-linolenic acid (ALA), which is the precursor for the ω-3 elongation and desaturation pathways. This study investigated the alterations induced by different intakes of flaxseed oil (containing 50% ALA), during gestation and lactation, upon the expression of genes involved in neurogenesis, memory-related molecular processes, and DNA methylation, in the brains of mouse offspring at the end of lactation (postnatal day 19, P19). In addition, DNA methylation status for the same genes was investigated. Maternal flaxseed oil supplementation during lactation increased the expression of Mecp2, Ppp1cc, and Reelin, while decreasing the expression of Ppp1cb and Dnmt3a. Dnmt1 expression was decreased by postnatal flaxseed oil supplementation but this effect was offset by ALA deficiency during gestation. Mecp2 DNA methylation was decreased by maternal ALA deficiency during gestation, with a more robust effect in the lactation-deficient group. In addition, linear regression analysis revealed positive correlations between Mecp2, Reelin, and Ppp1cc, between Gadd45b, Bdnf, and Creb1, and between Egr1 and Dnmt1, respectively. However, there were no correlations, in any gene, between DNA methylation and gene expression. In summary, the interplay between ALA availability during gestation and lactation differentially altered the expression of genes involved in neurogenesis and memory, in the whole brain of the offspring at the end of lactation. The Mecp2 epigenetic status was correlated with ALA availability during gestation. However, the epigenetic status of the genes investigated was not associated with transcript levels, suggesting that either the regulation of these genes is not necessarily under epigenetic control, or that the whole brain model is not adequate for the exploration of epigenetic regulation in the context of this study.
    International Journal of Developmental Neuroscience 08/2014; DOI:10.1016/j.ijdevneu.2014.05.006 · 2.92 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Individual differences in cognitive aging exist in humans and in rodent populations, yet the underlying mechanisms remain largely unclear. Activity-dependent delivery of GluR1-containing AMPA receptor (AMPARs) plays an essential role in hippocampal synaptic plasticity, learning and memory. We hypothesize that alterations of surface GluR1 expression in the hippocampus might correlate with age-related cognitive decline. To test this hypothesis, the present study evaluated the cognitive function of young adult and aged rats using Morris water maze. After the behavioral test, the surface expression of GluR1 protein in hippocampal CA1 region of rats was determined using Western blotting. The results showed that the surface expression of GluR1 in the hippocampus of aged rats that are cognitively impaired was much lower than that of young adults and aged rats with preserved cognitive abilities. The phosphorylation levels of GluR1 at Ser845 and Ser831 sites, which promote the synaptic delivery of GluR1, were also selectively decreased in the hippocampus of aged-impaired rats. Correlation analysis reveals that greater decrease in surface GluR1 expression was associated with worse behavioral performance. These results suggest that reduced surface GluR1 expression may contribute to cognitive decline that occurs in normal aging, and different pattern of surface GluR1 expression might be responsible for the individual differences in cognitive aging. Copyright © 2015. Published by Elsevier Ireland Ltd.
    Neuroscience Letters 02/2015; 591. DOI:10.1016/j.neulet.2015.02.030 · 2.06 Impact Factor

Preview

Download
0 Downloads
Available from