Nuclear reprogramming to a pluripotent state by three approaches.

Center for iPS Cell Research and Application, Kyoto University, Kyoto 606-8507, Japan.
Nature (Impact Factor: 42.35). 06/2010; 465(7299):704-12. DOI: 10.1038/nature09229
Source: PubMed

ABSTRACT The stable states of differentiated cells are now known to be controlled by dynamic mechanisms that can easily be perturbed. An adult cell can therefore be reprogrammed, altering its pattern of gene expression, and hence its fate, to that typical of another cell type. This has been shown by three distinct experimental approaches to nuclear reprogramming: nuclear transfer, cell fusion and transcription-factor transduction. Using these approaches, nuclei from 'terminally differentiated' somatic cells can be induced to express genes that are typical of embryonic stem cells, which can differentiate to form all of the cell types in the body. This remarkable discovery of cellular plasticity has important medical applications.

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: This short review is to list pros and cons which are based on the literature and personal experience in cell culture studies related to possible commercial production of artificial meat as functional food. The general view of muscle composition and determinants of meat quality are shortly described. Principles of muscle cell propagation in culture and mutual relationships between different cell types present in this organ are briefly discussed. Additionally, the effects of some cytokines and growth factors for muscle cell growth and muscle tissue development are indicated. Finally, conclusion remarks related to detrimental consequences of meat production to natural environment as well as personal opinion of author on the prospects of artificial meat production are declared.
    Journal of Integrative Agriculture 02/2015; 14(2). DOI:10.1016/S2095-3119(14)60882-0 · 0.63 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Biological cells present a paradox, in that they show simultaneous stability and flexibility, allowing them to adapt to new environments and to evolve over time. The emergence of stable cell states depends on genotype-to-phenotype associations, which essentially reflect the organization of gene regulatory modes. The view taken here is that cell-state organization is a dynamical process in which the molecular disorder manifests itself in a macroscopic order. The genome does not determine the ordered cell state; rather, it participates in this process by providing a set of constraints on the spectrum of regulatory modes, analogous to boundary conditions in physical dynamical systems. We have developed an experimental framework, in which cell populations are exposed to unforeseen challenges; novel perturbations they had not encountered before along their evolutionary history. This approach allows an unbiased view of cell dynamics, uncovering the potential of cells to evolve and develop adapted stable states. In the last decade, our experiments have revealed a coherent set of observations within this framework, painting a picture of the living cell that in many ways is not aligned with the conventional one. Of particular importance here, is our finding that adaptation of cell-state organization is essentially an efficient exploratory dynamical process rather than one founded on random mutations. Based on our framework, a set of concepts underlying cell-state organization-exploration evolving by global, non-specific, dynamics of gene activity-is presented here. These concepts have significant consequences for our understanding of the emergence and stabilization of a cell phenotype in diverse biological contexts. Their implications are discussed for three major areas of biological inquiry: evolution, cell differentiation and cancer. There is currently no unified theoretical framework encompassing the emergence of order, a stable state, in the living cell. Hopefully, the integrated picture described here will provide a modest contribution towards a physics theory of the cell.
    Reports on Progress in Physics 02/2015; 78(3):036602. DOI:10.1088/0034-4885/78/3/036602 · 15.63 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Reprogramming of somatic cells to induced pluripotent stem cells (iPSCs) requires profound alterations in the epigenetic landscape. During reprogramming, a change in chromatin structure resets the gene expression and stabilises self-renewal. Reprogramming is a highly inefficient process, in part due to multiple epigenetic barriers. Although many epigenetic factors have already been shown to affect self-renewal and pluripotency in embryonic stem cells (ESCs), only a few of them have been examined in the context of dedifferentiation. In order to improve current protocols of iPSCs generation, it is essential to identify epigenetic drivers and blockages of somatic cell reprogramming.


Available from