GJB1/Connexin 32 whole gene deletions in patients with X-linked Charcot–Marie–Tooth disease

Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA.
Neurogenetics (Impact Factor: 2.66). 10/2010; 11(4):465-70. DOI: 10.1007/s10048-010-0247-4
Source: PubMed

ABSTRACT The X-linked form of Charcot-Marie-Tooth disease (CMTX) is the second most common form of this genetically heterogeneous inherited peripheral neuropathy. CMT1X is caused by mutations in the GJB1 gene. Most of the mutations causative for CMT1X are missense mutations. In addition, a few disease causative nonsense mutations and frameshift deletions that lead to truncated forms of the protein have also been reported to be associated with CMT1X. Previously, there have been reports of patients with deletions of the coding sequence of GJB1; however, the size and breakpoints of these deletions were not assessed. Here, we report five patients with deletions that range in size from 12.2 to 48.3 kb and that completely eliminate the entire coding sequence of the GJB1 gene, resulting in a null allele for this locus. Analyses of the breakpoints of these deletions showed that they are nonrecurrent and that they can be generated by different mechanisms. In addition to PMP22, GJB1 is the second CMT gene for which both point mutations and genomic rearrangements can cause a neuropathy phenotype, stressing the importance of CMT as a genomic disorder.

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Autosomal recessive Stargardt disease (STGD1) is caused by hundreds of mutations in the ABCA4 gene, which are often specific to racial and ethnic groups. Here, we investigated the ABCA4 variation and their phenotypic expression in a cohort of 44 patients of African American descent, a previously under-characterized racial group. Patients were screened for mutations in ABCA4 by next-generation sequencing (NGS) and array-comparative genome hybridization (aCGH), followed by analyses for pathogenicity by in silico programs. Thorough ophthalmic examination was performed on all patients. At least two (expected) disease-causing alleles in the ABCA4 gene were identified in 27 (61.4%) patients, one allele in 11 (25%) patients, and no ABCA4 mutations were found in 6 (13.6%) patients. Altogether, 39 different disease-causing ABCA4 variants, including 7 new, were identified on 65 (74%) chromosomes, most of which were unique for this racial group. The most frequent ABCA4 mutation in this cohort was c.6320G>A (p.(R2107H)), representing 19.3% of all disease-associated alleles. No large copy number variants were identified in any patient. Most patients reported later onset of symptoms. In summary, the ABCA4 mutation spectrum in patients of West African descent differs significantly from that in patients of European descent, resulting in a later onset and ‘milder’ disease.This article is protected by copyright. All rights reserved
    Human Mutation 10/2014; 35(10). DOI:10.1002/humu.22626 · 5.05 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Intragenic copy-number variants (CNVs) contribute to the allelic spectrum of both Mendelian and complex disorders. Although pathogenic deletions and duplications in SPAST (mutations in which cause autosomal-dominant spastic paraplegia 4 [SPG4]) have been described, their origins and molecular consequences remain obscure. We mapped breakpoint junctions of 54 SPAST CNVs at nucleotide resolution. Diverse combinations of exons are deleted or duplicated, highlighting the importance of particular exons for spastin function. Of the 54 CNVs, 38 (70%) appear to be mediated by an Alu-based mechanism, suggesting that the Alu-rich genomic architecture of SPAST renders this locus susceptible to various genome rearrangements. Analysis of breakpoint Alus further informs a model of Alu-mediated CNV formation characterized by small CNV size and potential involvement of mechanisms other than homologous recombination. Twelve deletions (22%) overlap part of SPAST and a portion of a nearby, directly oriented gene, predicting novel chimeric genes in these subjects' genomes. cDNA from a subject with a SPAST final exon deletion contained multiple SPAST:SLC30A6 fusion transcripts, indicating that SPAST CNVs can have transcriptional effects beyond the gene itself. SLC30A6 has been implicated in Alzheimer disease, so these fusion gene data could explain a report of spastic paraplegia and dementia cosegregating in a family with deletion of the final exon of SPAST. Our findings provide evidence that the Alu genomic architecture of SPAST predisposes to diverse CNV alleles with distinct transcriptional-and possibly phenotypic-consequences. Moreover, we provide further mechanistic insights into Alu-mediated copy-number change that are extendable to other loci.
    The American Journal of Human Genetics 07/2014; 95(2). DOI:10.1016/j.ajhg.2014.06.014 · 10.99 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Autosomal recessive Stargardt disease (STGD1, MIM 248200) is caused by mutations in the ABCA4 gene. Complete sequencing of ABCA4 in STGD patients identifies compound heterozygous or homozygous disease-associated alleles in 65-70% of patients and only one mutation in 15-20% of patients. This study was designed to find the missing disease-causing ABCA4 variation by a combination of next-generation sequencing (NGS), array-Comparative Genome Hybridization (aCGH) screening, familial segregation, and in silico analyses. The entire 140kb ABCA4 genomic locus was sequenced in 114 STGD patients with one known ABCA4 exonic mutation revealing, on average, 200 intronic variants per sample. Filtering of these data resulted in 141 candidates for new mutations. Two variants were detected in 4 samples, two in 3 samples, and 20 variants in 2 samples, the remaining 117 new variants were detected only once. Multimodal analysis suggested 12 new likely pathogenic intronic ABCA4 variants, some of which were specific to (isolated) ethnic groups. No copy number variation (large deletions and insertions) was detected in any patient suggesting that it is a very rare event in the ABCA4 locus. Many variants were excluded since they were not conserved in non-human primates, were frequent in African populations and, therefore, represented ancestral, and not disease-associated, variants. The sequence variability in the ABCA4 locus is extensive and the non-coding sequences do not harbor frequent mutations in STGD patients of European-American descent. Defining disease-associated alleles in the ABCA4 locus requires exceptionally well characterized large cohorts and extensive analyses by a combination of various approaches.
    Human Molecular Genetics 07/2014; 23(25). DOI:10.1093/hmg/ddu396 · 6.68 Impact Factor