Article

Secreted frizzled related protein 4 reduces fibrosis scar size and ameliorates cardiac function after ischemic injury.

Foundation for Biomedical Research and Innovation TR1308, Kobe, Japan.
Tissue Engineering Part A (Impact Factor: 4.64). 11/2010; 16(11):3329-41. DOI: 10.1089/ten.TEA.2009.0739
Source: PubMed

ABSTRACT Expression of the Wnt modulator secreted frizzled related protein 4 (Sfrp4) is upregulated after heart ischemic injury. We show that intramuscular administration of recombinant Sfrp4 to rat heart ischemic injury and recanalization models prevents further deterioration of cardiac function after the ischemic injury. The effect of Sfrp4 persisted for at least 20 weeks when Sfrp4 was administered in a slow release system (Sfrp4-polyhedra) to both acute and subacute ischemic models. The histology of the dissected heart showed that the cardiac wall was thicker and the area of acellular scarring was smaller in Sfrp4-treated hearts than in controls. Increased amounts of both the inactive serine 9-phosphorylated form of glycogen synthase kinase (GSK)-3β and the active form of β-catenin were observed by immunohistology 3 days after lateral anterior descendant ligation in control, but not in Sfrp4-treated hearts. All together, we show that administration of Sfrp4 interferes with canonical Wnt signaling that could mediate the formation of acellular scar and consequently contributes to the prevention of aggravation of cardiac function.

0 Bookmarks
 · 
149 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: Injury to the adult kidney induces a number of developmental genes thought to regulate repair, including Wnt4. During kidney development, early nephron precursors and medullary stroma both express Wnt4, where it regulates epithelialization and controls smooth muscle fate, respectively. Expression patterns and roles for Wnt4 in the adult kidney, however, remain unclear. In this study, we used reporters, lineage analysis, and conditional knockout or activation of the Wnt/β-catenin pathway to investigate Wnt4 in the adult kidney. Proliferating, medullary, interstitial myofibroblasts strongly expressed Wnt4 during renal fibrosis, whereas tubule epithelia, except for the collecting duct, did not. Exogenous Wnt4 drove myofibroblast differentiation of a pericyte-like cell line, suggesting that Wnt4 might regulate pericyte-to-myofibroblast transition through autocrine signaling. However, conditional deletion of Wnt4 in interstitial cells did not reduce myofibroblast proliferation, cell number, or myofibroblast gene expression during fibrosis. Because the injured kidney expresses multiple Wnt ligands that might compensate for the absence of Wnt4, we generated a mouse model with constitutive activation of canonical Wnt/β-catenin signaling in interstitial pericytes and fibroblasts. Kidneys from these mice exhibited spontaneous myofibroblast differentiation in the absence of injury. Taken together, Wnt4 expression in renal fibrosis defines a population of proliferating medullary myofibroblasts. Although Wnt4 may be dispensable for myofibroblast transformation, canonical Wnt signaling through β-catenin stabilization is sufficient to drive spontaneous myofibroblast differentiation in interstitial pericytes and fibroblasts, emphasizing the importance of this pathway in renal fibrosis.
    Journal of the American Society of Nephrology 06/2013; · 8.99 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The adult mammalian heart predominantly comprises myocytes, fibroblasts, endothelial cells, smooth muscle cells and epicardial cells arranged in a precise three dimensional framework. Following cardiac injury the spatial arrangement of cells is disrupted as different populations of cells are recruited to the heart in a temporally regulated manner. The alteration of the cellular composition of the heart after cardiac injury thus enables different phenotypes of cells to interact with each other in a spatio-temporal dependent manner. It can be argued that the integrated study of such cellular interactions rather than the examination of single populations of cells can provide more insight into the biology of cardiac repair especially at an organ wide level. Many signaling systems undoubtedly mediate such cross talk between cells after cardiac injury. The Wnt/β-catenin system plays an important role during cardiac development and disease and here we describe how cell populations in the heart after cardiac injury mediate their interactions via Wnt/β-catenin pathway, determine how such interactions can affect a cardiac repair response and finally suggest an integrated approach to study cardiac cellular interactions.
    Cardiovascular Research 03/2014; · 5.81 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Encapsulation of cytokines within protein microcrystals (polyhedra) is a promising approach for the stabilization and delivery of therapeutic proteins. Here, we investigate the influence of vascular endothelial growth factor (VEGF) microcrystals and endostatin microcrystals on angiogenesis. VEGF was successfully encapsulated into microcrystals derived from insect cypovirus with overexpression of protein disulfide bond isomerase. VEGF microcrystals were observed to increase the phosphorylation of p42/p44 MAP kinase and to stimulate the proliferation, migration, and network and tube formation of human umbilical vein endothelial cells (HUVECs). Endostatin was also successfully encapsulated into microcrystals. Endostatin microcrystals showed antiangiogenesis activities and inhibited the migration, and network and tube formation of HUVECs. Local administration of endostatin microcrystals in mice inhibited both angiogenesis and tumor growth with clear significant differences between treatment and control groups. Endostatin microcrystals only affected angiogenesis, but had no significant effect on lymphangiogenesis compared to controls. Local therapy using endostatin microcrystals offers a potential approach to achieve sustained therapeutic release of antiangiogenic molecules for cancer treatment.
    Biomaterials 11/2013; · 8.31 Impact Factor

Full-text (2 Sources)

Download
37 Downloads
Available from
Jun 1, 2014

Similar Publications