Ruthenium polypyridyl complexes that induce mitochondria-mediated apoptosis in cancer cells.

Department of Chemistry, Jinan University, Guangzhou 510632, People's Republic of China.
Inorganic Chemistry (Impact Factor: 4.59). 07/2010; 49(14):6366-8. DOI: 10.1021/ic100277w
Source: PubMed

ABSTRACT The limitations of cisplatin-based chemotherapy, including high toxicity, undesirable side effects, and drug resistance, have motivated extensive investigations into alternative metal-based cancer therapies. Ruthenium (Ru) possesses several favorable properties suited to rational anticancer drug design and biological applications. In the present study, we synthesized a series of ruthenium polypyridyl complexes containing N,N-chelating ligands, examined their anticancer activities, and elucidated the molecular mechanisms through which they caused the cancer cell death. The results demonstrated that [Ru(phen)(2)-p-MOPIP](PF(6))(2).2H(2)O (RuPOP), a complex with potent antiproliferative activity, is able to induce mitochondria-mediated and caspase-dependent apoptosis in human cancer cells. On the basis of these results, we suggest that RuPOP may be a candidate for further evaluation as a chemopreventive and chemotherapeutic agent for human cancers, especially for melanoma.

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The problems of acquired resistance associated with platinum drugs may be addressed by chemotherapeutics based on other transition metals as they offer the possibility of novel mechanisms of action. In this study, the cellular uptake and induction of apoptosis in A549 human non-small cell lung cancer cells of three promising osmium(ii) arene complexes containing azopyridine ligands, [Os(η(6)-arene)(p-R-phenylazopyridine)X]PF6, where arene is p-cymene or biphenyl, R is OH or NMe2, and X is Cl or I, were investigated. These complexes showed time-dependent (4-48 h) potent anticancer activity with highest potency after 24 h (IC50 values ranging from 0.1 to 3.6 μM). Cellular uptake of the three compounds as quantified by ICP-MS, was independent of their log P values (hydrophobicity). Furthermore, maximum cell uptake was observed after 24 h, with evident cell efflux of the osmium after 48 and 72 h of exposure, which correlated with the corresponding IC50 values. The most active compound , [Os(η(6)-p-cymene)(NMe2-phenylazopyridine)I]PF6, was taken up by lung cancer cells predominately in a temperature-dependent manner indicating that energy-dependent mechanisms are important in the uptake of . Cell fractionation studies showed that all three compounds accumulated mainly in cellular membranes. Furthermore, compound induced apoptosis and caused accumulation in the S-phase of the cell cycle. In addition, induced cytochrome c release and alterations in mitochondrial membrane potential even after short exposure times, indicating that mitochondrial apoptotic pathways are involved. This study represents the first steps towards understanding the mode of action of this promising class of new osmium-based chemotherapeutics.
    Metallomics 03/2014; · 4.10 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Since the discovery of cisplatin more than 40 years ago, enormous research efforts have been dedicated to developing metal-based anticancer agents and to elucidating the mechanisms involved in the action of these compounds. Abnormal metabolism and the evasion of apoptosis are important hallmarks of malignant transformation, and the induction of apoptotic cell death has been considered to be a main pathway by which cytotoxic metal complexes combat cancer. However, many cancers have cellular defects involving the apoptotic machinery, which results in an acquired resistance to apoptotic cell death and therefore reduced chemotherapeutic effectiveness. Over the past decade, it has been revealed that a growing number of cell death pathways induced by metal complexes are not dependent on apoptosis. Metal complexes specifically triggering these alternative cell death pathways have been identified and explored as novel cancer treatment options. In this review, we discuss recent examples of metallomics studies on the different types of cell death induced by metal-based anticancer drugs, especially on the three major forms of programmed cell death (PCD) in mammalian cells: apoptosis, autophagy and regulated necrosis, also called necroptosis.
    Metallomics 03/2014; · 4.10 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Herein we demonstrated that dinuclear zinc complexes could overcome drug resistance in R-HepG2 drug resistance hepatocellular carcinoma cells through induction of mitochondria-mediated apoptosis or by triggering mitochondria fragmentation, depletion of the membrane potential and intracellular ATP levels.
    Dalton Transactions 03/2014; · 3.81 Impact Factor

Similar Publications