Article

Ciliary entry of the kinesin-2 motor KIF17 is regulated by importin-β2 and RanGTP. Nat Cell Biol

Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, Michigan 48109, USA.
Nature Cell Biology (Impact Factor: 20.06). 07/2010; 12(7):703-10. DOI: 10.1038/ncb2073
Source: PubMed

ABSTRACT The biogenesis, maintenance and function of primary cilia are controlled through intraflagellar transport (IFT) driven by two kinesin-2 family members, the heterotrimeric KIF3A/KIF3B/KAP complex and the homodimeric KIF17 motor. How these motors and their cargoes gain access to the ciliary compartment is poorly understood. Here, we identify a ciliary localization signal (CLS) in the KIF17 tail domain that is necessary and sufficient for ciliary targeting. Similarities between the CLS and classic nuclear localization signals (NLSs) suggest that similar mechanisms regulate nuclear and ciliary import. We hypothesize that ciliary targeting of KIF17 is regulated by a ciliary-cytoplasmic gradient of the small GTPase Ran, with high levels of GTP-bound Ran (RanGTP) in the cilium. Consistent with this, cytoplasmic expression of GTP-locked Ran(G19V) disrupts the gradient and abolishes ciliary entry of KIF17. Furthermore, KIF17 interacts with the nuclear import protein importin-beta2 in a manner dependent on the CLS and inhibited by RanGTP. We propose that Ran has a global role in regulating cellular compartmentalization by controlling the shuttling of cytoplasmic proteins into nuclear and ciliary compartments.

Download full-text

Full-text

Available from: Paul Jenkins, Aug 16, 2015
0 Followers
 · 
144 Views
  • Source
    • "Considering the fact that the RanGTP gradient that is established around the chromosome extensively contributes to spindle assembly and dynamics, it is conceivable that the formation of a secondary AurA–TPX2 gradient that contains active AurA and, consequently, its phosphorylated substrates is crucial for mitotic progression (Clarke and Zhang, 2008; Tsai et al., 2003). Indeed, RAN and its effectors regulate many aspects of centrosome and spindle function, but these are not discussed here owing to space limitations (for more information, readers can see Clarke and Zhang, 2008; Dishinger et al., 2010; Peloponese et al., 2005; Wang et al., 2005). Although TPX2 is required for targeting AurA to the mitotic spindle, depletion of TPX2 appears to have no effect on the centrosomal localization of AurA (Kufer et al., 2002). "
    [Show abstract] [Hide abstract]
    ABSTRACT: The centrosome acts as the major microtubule-organizing center (MTOC) for cytoskeleton maintenance in interphase and mitotic spindle assembly in vertebrate cells. It duplicates only once per cell cycle in a highly spatiotemporally regulated manner. When the cell undergoes mitosis, the duplicated centrosomes separate to define spindle poles and monitor the assembly of the bipolar mitotic spindle for accurate chromosome separation and the maintenance of genomic stability. However, centrosome abnormalities occur frequently and often lead to monopolar or multipolar spindle formation, which results in chromosome instability and possibly tumorigenesis. A number of studies have begun to dissect the role of mitotic kinases, including NIMA-related kinases (Neks), cyclin-dependent kinases (CDKs), Polo-like kinases (Plks) and Aurora kinases, in regulating centrosome duplication, separation and maturation and subsequent mitotic spindle assembly during cell cycle progression. In this Commentary, we review the recent research progress on how these mitotic kinases are coordinated to couple the centrosome cycle with the cell cycle, thus ensuring bipolar mitotic spindle fidelity. Understanding this process will help to delineate the relationship between centrosomal abnormalities and spindle defects.
    Journal of Cell Science 08/2014; 127(19). DOI:10.1242/jcs.151753 · 5.33 Impact Factor
  • Source
    • "These results can potentially be explained by effects of Ran-GTP on the balance between anterograde and retrograde trafficking of Kif17 along ciliary microtubules or by changes in microtubule dynamics, which Ran-GTP is known to regulate (Keryer et al., 2003; Mishra et al., 2010; Fan et al., 2011; Halpin et al., 2011). Together with the fact that a GDP-locked Ran mutant that disrupts nucleocytoplasmic transport does not affect the ciliary localization of Kif17, these data suggest that the ciliary functions of Ran differ from those in nucleocytoplasmic transport (Dishinger et al., 2010). Future experiments that address how Ran-GTP levels in the cilium are controlled, the function of nucleoporins at the ciliary base (Kee et al., 2012), and whether exportins regulate ciliary exit will clarify the extent to which trafficking through the ciliary base and nuclear pores resemble each other. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Cilia are conserved, microtubule-based cell surface projections that emanate from basal bodies, membrane-docked centrioles. The beating of motile cilia and flagella enables cells to swim and epithelia to displace fluids. In contrast, most primary cilia do not beat but instead detect environmental or intercellular stimuli. Inborn defects in both kinds of cilia cause human ciliopathies, diseases with diverse manifestations such as heterotaxia and kidney cysts. These diseases are caused by defects in ciliogenesis or ciliary function. The signaling functions of cilia require regulation of ciliary composition, which depends on the control of protein traffic into and out of cilia.
    The Journal of Cell Biology 06/2012; 197(6):697-709. DOI:10.1083/jcb.201111146 · 9.69 Impact Factor
  • Source
    • "CP110 restricts cilia formation and requires the interaction with CEP290 for this function (Tsang et al., 2008). One model of ciliary entry based on import of the Kif17 ciliary motor involves the shuttling of cilium-targeted proteins by the nuclear import protein, importin β2 (Dishinger et al., 2010). In this model, cargo is released into the ciliary compartment due to displacement on importin by GTP-bound Ran GTPase. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Cilia and flagella are highly conserved eukaryotic microtubule-based organelles that protrude from the surface of most mammalian cells. These structures require large protein complexes and motors for distal addition of tubulin and extension of the ciliary membrane. In order for ciliogenesis to occur, coordination of many processes must take place. An intricate concert of cell cycle regulation, vesicular trafficking, and ciliary extension must all play out with accurate timing to produce a cilium. Here, we review the stages of ciliogenesis as well as regulation of the length of the assembled cilium. Regulation of ciliogenesis during cell cycle progression centers on centrioles, from which cilia extend upon maturation into basal bodies. Centriole maturation involves a shift from roles in cell division to cilium nucleation via migration to the cell surface and docking at the plasma membrane. Docking is dependent on a variety of proteinaceous structures, termed distal appendages, acquired by the mother centriole. Ciliary elongation by the process of intraflagellar transport (IFT) ensues. Direct modification of ciliary structures, as well as modulation of signal transduction pathways, play a role in maintenance of the cilium. All of these stages are tightly regulated to produce a cilium of the right size at the right time. Finally, we discuss the implications of abnormal ciliogenesis and ciliary length control in human disease as well as some open questions.
    Differentiation 12/2011; 83(2):S30-42. DOI:10.1016/j.diff.2011.11.015 · 2.84 Impact Factor
Show more