Mechanisms of IL-12 synthesis by human dendritic cells treated with the chemical sensitizer NiSO4.

Universud, Institut National de la Santé et de la Recherche Médicale Unité Mixte de Recherche S 749 and 996, Faculté de Pharmacie, Châtenay-Malabry, France.
The Journal of Immunology (Impact Factor: 5.52). 07/2010; 185(1):89-98. DOI: 10.4049/jimmunol.0901992
Source: PubMed

ABSTRACT Allergic contact dermatitis, caused by metallic ions, is a T cell-mediated inflammatory skin disease. IL-12 is a 70-kDa heterodimeric protein composed of IL-12p40 and IL-12p35, playing a major role in the generation of allergen-specific T cell responses. Dendritic cells (DCs) are APCs involved in the induction of primary immune responses, as they possess the ability to stimulate naive T cells. In this study, we address the question whether the sensitizer nickel sulfate (NiSO(4)) itself or in synergy with other signals can induce the secretion of IL-12p70 in human monocyte-derived DCs (Mo-DCs). We found that IL-12p40 was produced by Mo-DC in response to NiSO(4) stimulation. Addition of IFN-gamma concomitantly to NiSO(4) leads to IL-12p70 synthesis. NiSO(4) treatment leads to the activation of MAPK, NF-kappaB pathways, and IFN regulatory factor 1 (IRF-1). We investigated the role of these signaling pathways in IL-12 production using known pharmacological inhibitors of MAPK and NF-kappaB pathways and RNA interference-mediated silencing of IRF-1. Our results showed that p38 MAPK, NF-kappaB, and IRF-1 were involved in IL-12p40 production induced by NiSO(4). Moreover, IRF-1 silencing nearly totally abrogated IL-12p40 and IL-12p70 production provoked by NiSO(4) and IFN-gamma. In response to NiSO(4), we observed that STAT-1 was phosphorylated on both serine and tyrosine residues and participated to NiSO(4)-induced IRF-1 activation. N-acetylcysteine abolished STAT-1 phosphorylation, suggesting that STAT-1 activation may be dependent on NiSO(4)-induced alteration of the redox status of the cell. These results indicate that p38 MAPK, NF-kappaB, and IRF-1 are activated by NiSO(4) in Mo-DC and cooperate for IL-12 production.

  • [Show abstract] [Hide abstract]
    ABSTRACT: Background/Purpose Monocytes play important roles in inflammatory responses and vascular remodeling after vascular stenting. This research focused on impacts of nickel (Ni) ions released from a corroded cardiovascular stent on cytotoxicity and monocyte activation. Methods A human promonocytic (macrophage-like) cell line (U937) was exposed to graduated concentrations of Ni2+in vitro. Cells were observed and harvested at indicated times to determine the effects using histological and biochemical methods. Results Ni caused U937 cell death in dose- and time-dependent manners. In vitro, high concentrations of Ni2+ (>240 μM) significantly induced cell apoptosis and increased terminal deoxynucleotidyl transferase (TdT) dUTP nick end labeling (TUNEL)-positive cells according to flow cytometric surveillance and triggered apoptotic cell death. Although no significant changes in Bcl-2 or Bax expressions were detected after 24 hours of Ni2+ treatment, increasing cleavage of caspase-3 and -8 was present. Results showed that cleavage of caspase-8 was inhibited by the presence of the inhibitor, Z-IETD-FMK, and this suggested the presence of Ni2+-induced U937 cell death through a death receptor-mediated pathway. Simultaneously, when treated with a high concentration of Ni2+ ions, expressions of the vascular remodeling factors, matrix metalloproteinases (MMP)-9 and -2, were activated in dose- and time-dependent manners. Secretion of the proliferative factor, monocyte chemoattractant protein (MCP)-1, significantly increased during the first 6 hours of incubation with 480 μM Ni2+-treated medium. Conclusion Our results demonstrated that a high concentration of Ni ions causes apoptotic cell death of circulating monocytes. They may also play different roles in vascular remodeling during the corrosion process following implantation of Ni alloy-containing devices.
    Journal of the Formosan Medical Association. 01/2014;
  • [Show abstract] [Hide abstract]
    ABSTRACT: Nickel (Ni) has been shown to be one of the most frequent metal allergens. We have already reported a murine metal allergy model with pathogen-associated molecular patterns (PAMPs) as adjuvants. Interleukin (IL)-1β plays a critical role in our mouse model. Because nonimmune cells, including fibroblasts, play important roles in local allergic inflammation, we investigated whether Ni induced inflammatory responses in mouse dermal fibroblasts (MDF). We also analyzed the synergistic effects between Ni, PAMPs, and IL-1β. MDF stimulated with Ni produced a significantly higher amount of nitric oxide (NO) in a dose-dependent manner. NO production was augmented by costimulation with IL-1β, but not with PAMPs. On the other hand, IL-1β or PAMPs induced a significantly higher amount of IL-6 production by MDF, but no augmentation was detected in the presence of Ni. A specific inhibitor for inducible nitric oxide synthase (iNOS) inhibited Ni-induced NO production. iNOS mRNA expression was significantly higher in MDF stimulated with Ni, IL-1β, or both. A specific inhibitor for hypoxia inducible factor (HIF)-2α, but not HIF-1α, inhibited NO production. Another frequent metal allergen, cobalt, also induced iNOS expression and NO production by MDF via the HIF-2α dependent pathway. The inhibitor for iNOS augments augmented ear swelling in Ni allergy mouse model. On the other hand, HIF-2α inhibitor attenuates allergic inflammation. These results indicate that metal allergens induce NO production in MDF via the HIF-2α dependent pathway and IL-1β augments NO production, which suggests that the NO induced by metal allergens plays a pathological role in metal allergies.
    Toxicological Sciences 06/2013; · 4.33 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Cancers arising in mucosal tissues account for a disproportionately large fraction of malignancies. Immunoglobulin G (IgG) and the neonatal Fc receptor for IgG (FcRn) have an important function in the mucosal immune system that we have now shown extends to the induction of CD8(+) T cell-mediated antitumor immunity. We demonstrate that FcRn within dendritic cells (DCs) was critical for homeostatic activation of mucosal CD8(+) T cells that drove protection against the development of colorectal cancers and lung metastases. FcRn-mediated tumor protection was driven by DCs activation of endogenous tumor-reactive CD8(+) T cells via the cross-presentation of IgG complexed antigens (IgG IC), as well as the induction of cytotoxicity-promoting cytokine secretion, particularly interleukin-12, both of which were independently triggered by the FcRn-IgG IC interaction in murine and human DCs. FcRn thus has a primary role within mucosal tissues in activating local immune responses that are critical for priming efficient anti-tumor immunosurveillance.
    Immunity 11/2013; · 19.80 Impact Factor

Full-text (2 Sources)

Available from
May 15, 2014