Article

Saliva Ontology: an ontology-based framework for a Salivaomics Knowledge Base.

University of California at Los Angeles School of Dentistry, University of California, Los Angeles, CA 90095-1668, USA.
BMC Bioinformatics (Impact Factor: 3.02). 01/2010; 11:302. DOI: 10.1186/1471-2105-11-302
Source: PubMed

ABSTRACT The Salivaomics Knowledge Base (SKB) is designed to serve as a computational infrastructure that can permit global exploration and utilization of data and information relevant to salivaomics. SKB is created by aligning (1) the saliva biomarker discovery and validation resources at UCLA with (2) the ontology resources developed by the OBO (Open Biomedical Ontologies) Foundry, including a new Saliva Ontology (SALO).
We define the Saliva Ontology (SALO; http://www.skb.ucla.edu/SALO/) as a consensus-based controlled vocabulary of terms and relations dedicated to the salivaomics domain and to saliva-related diagnostics following the principles of the OBO (Open Biomedical Ontologies) Foundry.
The Saliva Ontology is an ongoing exploratory initiative. The ontology will be used to facilitate salivaomics data retrieval and integration across multiple fields of research together with data analysis and data mining. The ontology will be tested through its ability to serve the annotation ('tagging') of a representative corpus of salivaomics research literature that is to be incorporated into the SKB.

0 Bookmarks
 · 
125 Views
  • Source
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Cancer is a malignant disease that has caused millions of human deaths. Its study has a long history of well over hundred years. There have been an enormous number of publications on cancer research. This integrated but unstructured biomedical text is of great value for cancer diagnostics, treatment, and prevention. The immense body and rapid growth of biomedical text on cancer has led to the appearance of a large number of text mining techniques aimed at extracting novel knowledge from scientific text. Biomedical text mining on cancer research is computationally automatic and high-throughput in nature. However, it is error-prone due to the complexity of natural language processing. In this review, we introduce the basic concepts underlying text mining and examine some frequently used algorithms, tools, and data sets, as well as assessing how much these algorithms have been utilized. We then discuss the current state-of-the-art text mining applications in cancer research and we also provide some resources for cancer text mining. With the development of systems biology, researchers tend to understand complex biomedical systems from a systems biology viewpoint. Thus, the full utilization of text mining to facilitate cancer systems biology research is fast becoming a major concern. To address this issue, we describe the general workflow of text mining in cancer systems biology and each phase of the workflow. We hope that this review can (i) provide a useful overview of the current work of this field; (ii) help researchers to choose text mining tools and datasets; and (iii) highlight how to apply text mining to assist cancer systems biology research.
    Journal of Biomedical Informatics 11/2012; · 2.13 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: There is a need recognized by the National Institute of Dental & Craniofacial Research and the National Cancer Institute to advance basic, translational and clinical saliva research. The goal of the Salivaomics Knowledge Base (SKB) is to create a data management system and web resource constructed to support human salivaomics research. To maximize the utility of the SKB for retrieval, integration and analysis of data, we have developed the Saliva Ontology and SDxMart. This article reviews the informatics advances in saliva diagnostics made possible by the Saliva Ontology and SDxMart.International Journal of Oral Science (2012) 4, doi:10.1038/ijos.2012.26; published online 15 June 2012.
    International Journal of Oral Science 06/2012; 4. · 2.72 Impact Factor

Full-text (3 Sources)

Download
19 Downloads
Available from
May 28, 2014