Article

Recommendations for validating estrogen and progesterone receptor immunohistochemistry assays.

Department of Pathology, St Jude Medical Center, Fullerton, California 92835, USA.
Archives of pathology & laboratory medicine (Impact Factor: 2.88). 06/2010; 134(6):930-5. DOI: 10.1043/1543-2165-134.6.930
Source: PubMed

ABSTRACT Estrogen receptor and progesterone receptor status is assessed on all newly diagnosed, invasive breast carcinomas and in recurrences to determine patient eligibility for hormonal therapy, but 10% to 20% of estrogen receptor and progesterone receptor test results are discordant when tested in multiple laboratories.
To define the analytic (technical) validation requirements for estrogen receptor and progesterone receptor immunohistochemistry assays used to select patients for hormonal therapy.
Literature review and expert consensus.
A standardized process for initial test validation is described. We believe adoption of this process will improve the accuracy of hormone-receptor testing, reduce interlaboratory variation, and minimize false-positive and false-negative results. Required ongoing assay assessment procedures are also described.

3 Bookmarks
 · 
396 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Gene expression profile‑based taxonomy of breast cancer (BC) has been described as a significant breakthrough in comprehending the differences in the origin and behavior of cancer to allow individually tailored therapeutic approaches. In line with this, we hypothesized that the gene expression profile of histologically normal epithelium (HNEpi) could harbor certain genetic abnormalities predisposing breast tissue cells to develop human epidermal growth factor receptor 2 (HER2)‑positive BC. Thus, the aim of the present study was to assess gene expression in normal and BC tissue (BCTis) from patients with BC in order to establish its value as a potential diagnostic marker for cancer development. An array study evaluating a panel of 84 pathway‑ and disease‑specific genes in HER2‑positive BC and tumor‑adjacent HNEpi was performed using quantitative polymerase chain reaction in 12 patients using microdissected samples from frozen tissue. Common prognostic and predictive parameters of BC were assessed by immunohistochemistry and in situ hybridization. In the BCTis and HNEpi samples of 12 HER2‑positive subjects with BC, the expression of 2,016 genes was assessed. A total of 39.3% of genes were deregulated at a minimal two‑fold deregulation rate and 10.7% at a five‑fold deregulation rate in samples of HNEpi or BCTis. Significant differences in gene expression between BCTis and HNEpi samples were revealed for BCL2L2, CD44, CTSD, EGFR, ERBB2, ITGA6, NGFB, RPL27, SCBG2A1 and SCGB1D2 genes (P<0.05), as well as GSN, KIT, KLK5, SERPINB5 and STC2 genes (P<0.01). Insignificant differences (P<0.07) were observed for CCNA1, CLU, DLC1, GABRP and IL6 genes. The ontological gene analyses revealed that the majority of the deregulated genes in the HNEpi samples were part of the functional gene group directly associated with BC origin and prognosis. Functional analysis showed that the most frequent gene deregulations occurred in genes associated with apoptosis and cell cycle regulation in BCTis samples, and with angiogenesis, regulation of the cell cycle and transcriptional activity in HNEpi samples. The molecular profiling of HNEpi breast tissue revealed gene expression abnormalities that may represent potential markers of increased risk for HER2‑positive malignant transformation of breast tissue, and may be able to be employed as predictors of prognosis.
    Molecular Medicine Reports 11/2014; · 1.48 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Objective: To establish evidence-based recommendations for the molecular analysis of lung cancers that are required to guide EGFR- and ALK-directed therapies, addressing which patients and samples should be tested, and when and how testing should be performed. Participants: Three cochairs without conflicts of interest were selected, one from each of the 3 sponsoring professional societies: College of American Pathologists, International Association for the Study of Lung Cancer, and Association for Molecular Pathology. Writing and advisory panels were constituted from additional experts from these societies. Evidence: Three unbiased literature searches of electronic databases were performed to capture published articles from January 2004 through February 2012, yielding 1533 articles whose abstracts were screened to identify 521 pertinent articles that were then reviewed in detail for their relevance to the recommendations. Evidence was formally graded for each recommendation. Consensus Process: Initial recommendations were formulated by the cochairs and panel members at a public meeting. Each guideline section was assigned to at least 2 panelists. Drafts were circulated to the writing panel (version 1), advisory panel (version 2), and the public (version 3) before submission (version 4). Conclusions: The 37 guideline items address 14 subjects, including 15 recommendations (evidence grade A/B). The major recommendations are to use testing for EGFR mutations and ALK fusions to guide patient selection for therapy with an epidermal growth factor receptor (EGFR) or anaplastic lymphoma kinase (ALK) inhibitor, respectively, in all patients with advanced-stage adenocarcinoma, regardless of sex, race, smoking history, or other clinical risk factors, and to prioritize EGFR and ALK testing over other molecular predictive tests. As scientific discoveries and clinical practice outpace the completion of randomized clinical trials, evidence-based guidelines developed by expert practitioners are vital for communicating emerging clinical standards. Already, new treatments targeting genetic alterations in other, less common driver oncogenes are being evaluated in lung cancer, and testing for these may be addressed in future versions of these guidelines.
    Journal of Molecular Diagnostics 07/2013; 15(4):415-453. · 3.96 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Background The histopathologic distinction between typical carcinoid (TC) and atypical carcinoid (AC) of the lung is based largely on mitotic index. Ki-67 may aid in separation of these tumors, as well as the distinction from large cell neuroendocrine carcinoma (LCNEC).Methods We identified 55 surgically resected primary neuroendocrine lung tumors (39 TC, 7 AC, 9 LCNEC) based on mitotic rate and histologic features. Ki-67 proliferative index based on automated image analysis, tumor necrosis, nodal metastases, local or distant recurrence, and survival were compared across groups.ResultsThe mean mitotic count and Ki-67 index for TC, AC, and LCNEC were 0.1 and 2.3%, 3.4 and 16.8%, and 56.1 and 81.3% respectively. The Ki-67 index did not overlap among groups, with ranges of 0¿6.7% for TC, 9.9-25.7% for AC, and 63.2-91.9% for LCNEC. Nodal metastases were identified in 4/39 (10%) TC, 2/7 (22%) AC, and 2/8 (25%) LCNEC. There was no survival difference between TC and AC, but there was a significant survival difference between LCNEC and TC and AC combined (p¿<¿0.001). There was a step-wise increase in disease free survival with tumor grade: no TC recurred, 2/7 AC recurred or progressed (median interval 35.5 months), and all LCNEC recurred or progressed (median interval 10.1 months). No patient with TC or AC died of disease, compared to 7/8 LCNEC with follow-up data.Conclusions We conclude that Ki-67 index is a useful diagnostic marker for neuroendocrine tumors, with 7% a divider between AC and TC, and 50% a divider between LCNEC and AC. LCNEC is biologically different from AC and TC, with a much more aggressive course, and a high Ki-67 index.Virtual SlidesThe virtual slide(s) for this article can be found here: http://www.diagnosticpathology.diagnomx.eu/vs/13000_2014_174.
    Diagnostic Pathology 10/2014; 9(1):174. · 2.41 Impact Factor