Brizuela L, Dayon A, Doumerc N, Ader I, Golzio M, Izard JC et al.. The sphingosine kinase-1 survival pathway is a molecular target for the tumor-suppressive tea and wine polyphenols in prostate cancer. FASEB J 24: 3882-3894

Centre National de la Recherche Scientifique, Institut de Pharmacologie et de Biologie Structurale, Toulouse, France.
The FASEB Journal (Impact Factor: 5.04). 10/2010; 24(10):3882-94. DOI: 10.1096/fj.10-160838
Source: PubMed


The sphingosine kinase-1/sphingosine 1-phosphate (SphK1/S1P) pathway has been associated with cancer promotion and progression and resistance to treatments in a number of cancers, including prostate adenocarcinoma. Here we provide the first evidence that dietary agents, namely, epigallocatechin gallate (EGCg, IC(50)≈75 μM), resveratrol (IC(50)≈40 μM), or a mixture of polyphenols from green tea [polyphenon E (PPE), IC(50)≈70 μM] or grapevine extract (vineatrol, IC(50)≈30 μM), impede prostate cancer cell growth in vitro and in vivo by inhibiting the SphK1/S1P pathway. We establish that SphK1 is a downstream effector of the ERK/phospholipase D (PLD) pathway, which is inhibited by green tea and wine polyphenols. Enforced expression of SphK1 impaired the ability of green tea and wine polyphenols, as well as pharmacological inhibitors of PLD and ERK activities, to induce apoptosis in PC-3 and C4-2B cells. The therapeutic efficacy of these polyphenols on tumor growth and the SphK1/S1P pathway were confirmed in animals using a heterotopic PC-3 tumor in place model. PC-3/SphK1 cells implanted in animals developed larger tumors and resistance to treatment with polyphenols. Furthermore, using an orthotopic PC-3/GFP model, the chemopreventive effect of an EGCg or PPE diet was associated with SphK1 inhibition, a decrease in primary tumor volume, and occurrence and number of metastases. These results provide the first demonstration that the prosurvival, antiapoptotic SphK1/S1P pathway represents a target of dietary green tea and wine polyphenols in cancer.

Download full-text


Available from: Leyre Brizuela Madrid, Jun 25, 2014
1 Follower
12 Reads
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Background: Epigallocatechin-3-gallate (EGCG) is a major ingredient of green tea (GT) and silibinin (SB), the active component of Silymarin presumably hold a potential to prevent pathogenomics. Prostate cancer exacerbation is triggered by fusion transcripts formed because of genomic instability induced by juxtapositioning of two genes. This chimeric transcript is implicated in androgen dependent and independent prostate cancer. Tremendous work is done on the characterization of the mediators involved in the disease refractoriness, yet no study has addressed clinical management of these prostate fusion transcripts impressively. Methods: An abolished ATM dynamics challenges integrity of DNA. In agreement with this assumption, ATM and DNA-PK were impaired in LNCaP cell line to confirm a tight interaction of these mediators with the expression profile of TMPRSS2-ERG. Abolished ATM enhanced the expression of the fusion transcript. Similarly blunting of DNA-PK downregulated the expression of the fusion transcript giving a notion that DNA-PK is involved in the chromosomal translocation. LNCaP cell lines were analyzed for the effect of EGCG and SB on the expression profile of TMPRSS2-ERG. Results: In this particular unprecedented study, treatment of the LNCaP cell line with EGCG and Silibilin recapitulated ATM expression and activity and downregulated the fusion transcript appearance. Conclusions: These results underscore the therapeutic effect of EGCG and SB in mitigating the exacerbation of the disease with reference to the fusion transcripts.
    World Journal of Surgical Oncology 01/2010; 1(6):242-246. · 1.41 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The use of novel and improved chemopreventive and chemotherapeutic agents for the prevention and treatment of cancer is on the rise. Natural products have always afforded a rich source of such agents. Epidemiological evidence suggests that a higher flavonoid intake is associated with low cancer risk. Accumulating data clearly indicate that the induction of apoptosis is an important component in the chemoprevention of cancer by naturally occurring dietary agents. Resveratrol, a naturally occurring polyphenol, demonstrates pleiotropic health benefits, including antioxidant, anti-inflammatory, antiaging, cardioprotective, and neuroprotective activities. Because of these properties and their wide distribution throughout the plant kingdom, resveratrol is envisioned as a potential chemopreventive/curative agent. Currently, a number of preclinical findings from our lab and elsewhere suggest resveratrol to be a promising natural weapon in the war against cancer. Remarkable progress in elucidating the molecular mechanisms underlying the anticancer properties of resveratrol has been achieved. Here, we focus on some of the myriad pathways that resveratrol targets to exert its chemopreventive role and advocate that resveratrol holds tremendous potential as an efficient anticancer drug of the future.
    Annals of the New York Academy of Sciences 01/2011; 1215(1):1-8. DOI:10.1111/j.1749-6632.2010.05870.x · 4.38 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: C282Y and H63D are two common variants of the hemochromatosis protein HFE. SH-SY5Y human neuroblastoma cells stably transfected to express either wild type HFE (WT-HFE), or the C282Y or H63D allele were analyzed for effect of expression of the mutant proteins on transcription of 14 enzymes involved in sphingolipid metabolism. Cells expressing the C282Y variant showed significant increases (>2-fold) in transcription of five genes and decreases in two compared to that seen for cells expressing WT-HFE, while cells expressing the H63D variant showed an elevation in transcription of one gene and a decrease in two. These changes were seen as alterations in ganglioside composition, cell surface binding by the binding subunit of cholera toxin, expression of sphingosine-kinase-1 and synthesis of sphingosine-1-phosphate. These changes may explain why C282Y-HFE is a risk factor for colon and breast cancer and possibly protective against Alzheimer's disease while H63D-HFE is a risk factor for neurodegenerative diseases.
    Neurochemical Research 09/2011; 36(9):1687-96. DOI:10.1007/s11064-011-0403-8 · 2.59 Impact Factor
Show more

Similar Publications