Phylogenetic evidence for lateral gene transfer in the intestine of marine iguanas.

Appalachian Laboratory, University of Maryland Center for Environmental Science, Frostburg, Maryland, USA.
PLoS ONE (Impact Factor: 3.53). 01/2010; 5(5):e10785. DOI: 10.1371/journal.pone.0010785
Source: PubMed

ABSTRACT Lateral gene transfer (LGT) appears to promote genotypic and phenotypic variation in microbial communities in a range of environments, including the mammalian intestine. However, the extent and mechanisms of LGT in intestinal microbial communities of non-mammalian hosts remains poorly understood.
We sequenced two fosmid inserts obtained from a genomic DNA library derived from an agar-degrading enrichment culture of marine iguana fecal material. The inserts harbored 16S rRNA genes that place the organism from which they originated within Clostridium cluster IV, a well documented group that habitats the mammalian intestinal tract. However, sequence analysis indicates that 52% of the protein-coding genes on the fosmids have top BLASTX hits to bacterial species that are not members of Clostridium cluster IV, and phylogenetic analysis suggests that at least 10 of 44 coding genes on the fosmids may have been transferred from Clostridium cluster XIVa to cluster IV. The fosmids encoded four transposase-encoding genes and an integrase-encoding gene, suggesting their involvement in LGT. In addition, several coding genes likely involved in sugar transport were probably acquired through LGT.
Our phylogenetic evidence suggests that LGT may be common among phylogenetically distinct members of the phylum Firmicutes inhabiting the intestinal tract of marine iguanas.

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Herbivorous reptiles depend on complex gut microbial communities to effectively degrade dietary polysaccharides. The composition of these fermentative communities may vary based on dietary differences. To explore the role of diet in shaping gut microbial communities, we evaluated the fecal samples from two related host species--the algae-consuming marine iguana (Amblyrhynchus cristatus) and land iguanas (LI) (genus Conolophus) that consume terrestrial vegetation. Marine and LI fecal samples were collected from different islands in the Galápagos archipelago. High-throughput 16S rRNA-based pyrosequencing was used to provide a comparative analysis of fecal microbial diversity. At the phylum level, the fecal microbial community in iguanas was predominated by Firmicutes (69.5±7.9%) and Bacteroidetes (6.2±2.8%), as well as unclassified Bacteria (20.6±8.6%), suggesting that a large portion of iguana fecal microbiota is novel and could be involved in currently unknown functions. Host species differed in the abundance of specific bacterial groups. Bacteroides spp., Lachnospiraceae and Clostridiaceae were significantly more abundant in the marine iguanas (MI) (P-value>1E-9). In contrast, Ruminococcaceae were present at >5-fold higher abundance in the LI than MI (P-value>6E-14). Archaea were only detected in the LI. The number of operational taxonomic units (OTUs) in the LI (356-896 OTUs) was >2-fold higher than in the MI (112-567 OTUs), and this increase in OTU diversity could be related to the complexity of the resident bacterial population and their gene repertoire required to breakdown the recalcitrant polysaccharides prevalent in terrestrial plants. Our findings suggest that dietary differences contribute to gut microbial community differentiation in herbivorous lizards. Most importantly, this study provides a better understanding of the microbial diversity in the iguana gut; therefore facilitating future efforts to discover novel bacterial-associated enzymes that can effectively breakdown a wide variety of complex polysaccharides.
    The ISME Journal 03/2011; 5(9):1461-70. · 8.95 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: It is thought that dispersal limitation primarily structures host-associated bacterial populations because host distributions inherently limit transmission opportunities. However, enteric bacteria may disperse great distances during food-borne outbreaks. It is unclear if such rapid long-distance dispersal events happen regularly in natural systems or if these events represent an anthropogenic exception. We characterized Salmonella enterica isolates from the feces of free-living Galápagos land and marine iguanas from five sites on four islands using serotyping and genomic fingerprinting. Each site hosted unique and nearly exclusive serovar assemblages. Genomic fingerprint analysis offered a more complex model of S. enterica biogeography, with evidence of both unique strain pools and of spatial population structuring along a geographic gradient. These findings suggest that even relatively generalist enteric bacteria may be strongly dispersal limited in a natural system with strong barriers, such as oceanic divides. Yet, these differing results seen on two typing methods also suggests that genomic variation is less dispersal limited, allowing for different ecological processes to shape biogeographical patterns of the core and flexible portions of this bacterial species' genome.
    PLoS ONE 01/2012; 7(5):e37302. · 3.53 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Several bacterial families are known to be highly abundant within the human microbiome, but their ecological roles and evolutionary histories have yet to be investigated in depth. One such family, Lachnospiraceae (phylum Firmicutes, class Clostridia) is abundant in the digestive tracts of many mammals and relatively rare elsewhere. Members of this family have been linked to obesity and protection from colon cancer in humans, mainly due to the association of many species within the group with the production of butyric acid, a substance that is important for both microbial and host epithelial cell growth. We examined the genomes of 30 Lachnospiraceae isolates to better understand the origin of butyric acid capabilities and other ecological adaptations within this group. Butyric acid production-related genes were detected in fewer than half of the examined genomes with the distribution of this function likely arising in part from lateral gene transfer. An investigation of environment-specific functional signatures indicated that human gut-associated Lachnospiraceae possess genes for endospore formation while other members of this family lack key sporulation-associated genes, an observation supported by analysis of metagenomes from the human gut, oral cavity and bovine rumen. Our analysis demonstrates that adaptation to an ecological niche and acquisition of defining functional roles within a microbiome can arise through a combination of both habitat-specific gene loss and lateral gene transfer.
    Genome Biology and Evolution 03/2014; · 4.76 Impact Factor

Full-text (2 Sources)

1 Download
Available from