The transcriptional coactivator DRIP/mediator complex is involved in vitamin D receptor function and regulates keratinocyte proliferation and differentiation.

Department of Medicine and Endocrinology, University of California, San Francisco and Veterans Affairs Medical Center San Francisco, San Francisco, California 94121, USA.
Journal of Investigative Dermatology (Impact Factor: 6.19). 10/2010; 130(10):2377-88. DOI: 10.1038/jid.2010.148
Source: PubMed

ABSTRACT Mediator is a multisubunit coactivator complex that facilitates transcription of nuclear receptors. We investigated the role of the mediator complex as a coactivator for vitamin D receptor (VDR) in keratinocytes. Using VDR affinity beads, the vitamin D receptor interacting protein (DRIP)/mediator complex was purified from primary keratinocytes, and its subunit composition was determined by mass spectrometry. The complex included core subunits, such as DRIP205/MED1 (MED1), that directly binds to VDR. Additional subunits were identified that are components of the RNA polymerase II complex. The functions of different mediator components were investigated by silencing its subunits. The core subunit MED1 facilitates VDR activity and regulating keratinocyte proliferation and differentiation. A newly described subunit MED21 also has a role in promoting keratinocyte proliferation and differentiation, whereas MED10 has an inhibitory role. Blocking MED1/MED21 expression caused hyperproliferation of keratinocytes, accompanied by increases in mRNA expression of the cell cycle regulator cyclin D1 and/or glioma-associated oncogene homolog. Blocking MED1 or MED21 expression also resulted in defects in calcium-induced keratinocyte differentiation, as indicated by decreased expression of differentiation markers and decreased translocation of E-cadherin to the membrane. These results show that keratinocytes use the transcriptional coactivator mediator to regulate VDR functions and control keratinocyte proliferation and differentiation.

  • [Show abstract] [Hide abstract]
    ABSTRACT: The active metabolite of vitamin D, 1,25-dihydroxyvitamin D3 (1,25(OH)2D3), suppresses the proliferation while promoting the differentiation of keratinocytes through the vitamin D receptor (VDR). β-catenin, on the other hand, promotes proliferation and blocks epidermal differentiation, although it stimulates hair follicle differentiation. In intestinal epithelia VDR binds β-catenin and blocks its proliferative effects. In this study we investigated the role of 1,25(OH)2D3/VDR on β-catenin regulated gene transcription during keratinocyte proliferation and differentiation. 1,25(OH)2D3 suppressed promoter reporter activity driven by synthetic and natural TCF/β-catenin response elements. Over-expression of VDR further suppressed these TCF/β-catenin promoter activities. 1,25(OH)2D3 also suppressed the mRNA expression of the β-catenin regulated gene Gli1 through VDR. These data was consistent with our previous observations that VDR silencing resulted in keratinocyte hyperproliferation with increased expression of Gli1 in vitro, whereas VDR null skin showed hyperproliferation in vivo. In contrast, 1,25(OH)2D3 induced expression of another β-catenin regulated gene, PADI1, important for both epidermal and hair follicle differentiation. Deletion of VDR resulted in defects in hair differentiation in vivo, with decreased expression of β-catenin regulated hair differentiation genes such as PADI1, hair keratin KRT31 and calcium binding protein S100a3. These genes possess vitamin D response elements (VDRE) adjacent to TCF/β-catenin response elements and are regulated by both VDR and β-catenin signaling. Therefore, we propose that VDR and β-catenin interact reciprocally to promote VDR stimulation of genes involved with differentiation that contain both VDR and β-catenin response elements while inhibiting β-catenin stimulation of genes involved with proliferation. Thus the major finding of this study is that while 1,25(OH)2D3/VDR inhibits the actions of β-catenin to promote keratinocyte proliferation, 1,25(OH)2D3/VDR promotes the ability of β-catenin to stimulate hair follicle differentiation.
    The Journal of steroid biochemistry and molecular biology 11/2013; · 3.98 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The secosteroidal hormone 1,25-dihyroxyvitamin D [1,25(OH)2D3] and its receptor, the vitamin D receptor (VDR), are crucial regulators of epidermal proliferation and differentiation. However, the effects of 1,25(OH)2D3-directed signaling on oral keratinocyte pathophysiology have not been well studied. We examined the role of 1,25(OH)2D3 in regulating proliferation and differentiation in cultured oral keratinocytes and on the oral epithelium in vivo. Using lentiviral-mediated shRNA to silence VDR, we generated an oral keratinocyte cell line with stable knockdown of VDR expression. VDR knockdown significantly enhanced proliferation and disrupted calcium- and 1,25(OH)2D3-induced oral keratinocyte differentiation, emphasizing the anti-proliferative and pro-differentiation effects of 1,25(OH)2D3 in oral keratinocytes. Using vitamin D3-deficient diets, we induced chronic vitamin D deficiency in mice as evidenced by decreased serum 25-hydroxyvitamin D (25OHD) concentrations. The vitamin D-deficient mice manifested increased proliferation of the tongue epithelium, but did not develop any morphological or histological abnormalities in the oral epithelium, suggesting that vitamin D deficiency alone is insufficient to alter oral epithelial homeostasis and provoke carcinogenesis. Immunohistochemical analyses of human and murine oral squamous cell carcinomas showed increased VDR expression. Overall, our results provide strong support for a crucial role for vitamin D signaling in oral keratinocyte pathophysiology.
    International Journal of Oncology 03/2014; · 2.66 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Cell fates are determined by specific transcriptional programs. Here we provide evidence that the transcriptional coactivator, Mediator 1 (Med1), is essential for the cell fate determination of ectodermal epithelia. Conditional deletion of Med1 in vivo converted dental epithelia into epidermal epithelia, causing defects in enamel organ development while promoting hair formation in the incisors. We identified multiple processes by which hairs are generated in Med1 deficient incisors: 1) dental epithelial stem cells lacking Med 1 fail to commit to the dental lineage, 2) Sox2-expressing stem cells extend into the differentiation zone and remain multi-potent due to reduced Notch1 signaling, and 3) epidermal fate is induced by calcium as demonstrated in dental epithelial cell cultures. These results demonstrate that Med1 is a master regulator in adult stem cells to govern epithelial cell fate.
    PLoS ONE 01/2014; 9(6):e99991. · 3.73 Impact Factor

Full-text (2 Sources)

1 Download
Available from
Jun 10, 2014