Melanocortin 1 receptor genotype: an important determinant of the damage response of melanocytes to ultraviolet radiation

Department of Dermatology, University of Cincinnati College of Medicine, 231 Albert Sabin Way, Cincinnati, OH 45267-0592, USA.
The FASEB Journal (Impact Factor: 5.48). 10/2010; 24(10):3850-60. DOI: 10.1096/fj.10-158485
Source: PubMed

ABSTRACT The melanocortin 1 receptor gene is a main determinant of human pigmentation, and a melanoma susceptibility gene, because its variants that are strongly associated with red hair color increase melanoma risk. To test experimentally the association between melanocortin 1 receptor genotype and melanoma susceptibility, we compared the responses of primary human melanocyte cultures naturally expressing different melanocortin 1 receptor variants to α-melanocortin and ultraviolet radiation. We found that expression of 2 red hair variants abolished the response to α-melanocortin and its photoprotective effects, evidenced by lack of functional coupling of the receptor, and absence of reduction in ultraviolet radiation-induced hydrogen peroxide generation or enhancement of repair of DNA photoproducts, respectively. These variants had different heterozygous effects on receptor function. Microarray data confirmed the observed differences in responses of melanocytes with functional vs. nonfunctional receptor to α-melanocortin and ultraviolet radiation, and identified DNA repair and antioxidant genes that are modulated by α-melanocortin. Our findings highlight the molecular mechanisms by which the melanocortin 1 receptor genotype controls genomic stability of and the mutagenic effect of ultraviolet radiation on human melanocytes.


Available from: Kazumasa Wakamatsu, May 04, 2015
1 Follower
  • [Show abstract] [Hide abstract]
    ABSTRACT: Melanocortin 1 receptor (MC1R) signaling stimulates black eumelanin production through a cAMP dependent pathway. MC1R polymorphisms can impair this process, resulting in a predominance of red phaeomelanin. The red hair, fair skin and UV sensitive phenotype is a well-described melanoma risk factor. MC1R polymorphisms also confer melanoma risk independent of pigment. We investigated the effect of Mc1r deficiency in a mouse model of UV-induced melanoma. C57BL/6-Mc1r(+/+) -HGF transgenic mice have a characteristic hyperpigmented black phenotype with extra-follicular dermal melanocytes located at the dermal/epidermal junction. UVB induces melanoma, independent of melanin pigmentation, but UVA-induced and spontaneous melanomas are dependent on black eumelanin. We crossed these mice with yellow C57BL/6-Mc1r(e/e) animals which have a non-functional Mc1r and produce predominantly yellow phaeomelanin. Yellow C57BL/6-Mc1r(e/e) -HGF mice produced no melanoma in response to UVR or spontaneously even though the HGF transgene and its receptor Met were expressed. Total melanin was less than in C57BL/6-Mc1r(+/+) -HGF mice, hyperpigmentation was not observed and there were few extra-follicular melanocytes. Thus, functional Mc1r was required for expression of the transgenic HGF phenotype. Heterozygous C57BL/6-Mc1r(e/+) -HGF mice were black and hyperpigmented and, although extra-follicular melanocytes and skin melanin content were similar to C57BL/6-Mc1r(+/+) -HGF animals, they developed UV- induced and spontaneous melanomas with significantly less efficiency by all criteria. Thus, heterozygosity for Mc1r was sufficient to restore the transgenic HGF phenotype but insufficient to fully restore melanoma. We conclude that a previously unsuspected melanin-independent interaction between Mc1r and Met signaling pathways is required for HGF-dependent melanoma and postulate that this pathway is involved in human melanoma. © 2014 Wiley Periodicals, Inc.
    International Journal of Cancer 02/2015; 136(4). DOI:10.1002/ijc.29050 · 5.01 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: G-Protein Coupled Receptors (GPCRs), which include melanocortin-1 receptor (MC1R), play a crucial role in melanocytes development, proliferation and differentiation. Activation of the MC1R by the α-melanocyte stimulating hormone (α-MSH) leads to the activation of the cAMP signaling pathway that is mainly associated with differentiation and pigment production. Some MC1R polymorphisms produce cAMP signaling impairment and pigmentary phenotypes such as the red head color and fair skin phenotype (RHC) that is usually associated with higher risk for melanoma development. Despite its importance in melanocyte biology, the role of cAMP signaling cutaneous melanoma is not well understood. Melanoma is primarily driven by mutations in the components of mitogen-activated protein kinases (MAPK) pathway. Increasing evidence, however, now suggests that cAMP signaling also plays an important role in melanoma even though genetic alterations in components of this pathway are note commonly found in melanoma. Here we review these new roles for cAMP in melanoma including its contribution to the notorious treatment resistance of melanoma.
    Archives of Biochemistry and Biophysics 07/2014; DOI:10.1016/ · 3.04 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Beginning in the last decade of the twentieth century, the fields of pigment cell research and melanoma have witnessed major breakthroughs in the understanding of the role of melanocortins in human pigmentation and the DNA damage response of human melanocytes to solar ultraviolet radiation (UV). This began with the cloning of the melanocortin 1 receptor (MC1R) gene from human melanocytes and the demonstration that the encoded receptor is functional. Subsequently, population studies found that the MC1R gene is highly polymorphic, and that some of its variants are associated with red hair phenotype, fair skin and poor tanning ability. Using human melanocytes cultured from donors with different MC1R genotypes revealed that the alleles associated with red hair color encode fro 1 non-functional receptor. Epidemiological studies linked the MC1R red hair color variants to increased melanoma risk. Investigating the impact of different MC1R variants on the response of human melanocytes to UV led to the important discovery that the MC1R signaling activates antioxidant, DNA repair and survival pathways, in addition to stimulation of eumelanin synthesis. These effects of MC1R were absent in melanocytes expressing 2 MC1R red hair color variants that result in loss of function of the receptor. The importance of the MC1R in reducing UV-induced genotoxicity in melanocytes led us to design small peptide analogs of the physiological MC1R agonist α-melanocortin (α-melanocyte stimulating hormone; α-MSH) for the goal of utilizing them for melanoma chemoprevention.
    Archives of Biochemistry and Biophysics 07/2014; DOI:10.1016/ · 3.04 Impact Factor