Article

Aristolochic acid suppresses DNA repair and triggers oxidative DNA damage in human kidney proximal tubular cells

School of Chinese Medicine, China Medical University, Taichung, Taiwan.
Oncology Reports (Impact Factor: 2.19). 07/2010; 24(1):141-53. DOI: 10.3892/or_00000839
Source: PubMed

ABSTRACT Aristolochic acid (AA), derived from plants of the Aristolochia genus, has been proven to be associated with aristolochic acid nephropathy (AAN) and urothelial cancer in AAN patients. In this study, we used toxicogenomic analysis to clarify the molecular mechanism of AA-induced cytotoxicity in normal human kidney proximal tubular (HK-2) cells, the target cells of AA. AA induced cytotoxic effects in a dose-dependent (10, 30, 90 microM for 24 h) and time-dependent manner (30 microM for 1, 3, 6, 12 and 24 h). The cells from those experiments were then used for microarray experiments in triplicate. Among the differentially expressed genes analyzed by Limma and Ingenuity Pathway Analysis software, we found that genes in DNA repair processes were the most significantly regulated by all AA treatments. Furthermore, response to DNA damage stimulus, apoptosis, and regulation of cell cycle, were also significantly regulated by AA treatment. Among the differentially expressed genes found in the dose-response and time-course studies that were involved in these biological processes, two up-regulated (GADD45B, NAIP), and six down-regulated genes (TP53, PARP1, OGG1, ERCC1, ERCC2, and MGMT) were con-firmed by quantitative real-time reverse transcription polymerase chain reaction (qRT-PCR). AA exposure also caused a down-regulation of the gene expression of anti-oxidant enzymes, such as superoxide dismutase, glutathione reductase, and glutathione peroxidase. Moreover, AA treatment led to increased frequency of DNA strand breaks, 8-hydroxydeoxyguanosine-positive nuclei, and micronuclei in a dose-dependent manner in HK-2 cells, possibly as a result of the inhibition of DNA repair. These data suggest that oxidative stress plays a role in the cytotoxicity of AA. In addition, our results provide insight into the involvement of down-regulation of DNA repair gene expression as a possible mechanism for AA-induced genotoxicity.

0 Followers
 · 
92 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Aristolochic acid (AA) is an active component in herbal drugs derived from the Aristolochia species. Although these drugs have been used since antiquity, AA is both genotoxic and carcinogenic in animals and humans, resulting in kidney tumours in rats and upper urinary tract tumours in humans. In the present study, we conducted microarray analysis of microRNA (miRNA) expression in tissues from transgenic Big Blue rats that were treated for 12 weeks with 0.1-10mg/kg AA, using a protocol that previous studies indicate eventually results in kidney tumours and mutations in kidney and liver. Global analysis of miRNA expression of rats treated with 10mg/kg AA indicated that 19 miRNAs were significantly dysregulated in the kidney, with most of the miRNAs related to carcinogenesis. Only one miRNA, miR-34a (a tumour suppressor), was differentially expressed in the liver. The expression of the two most responsive kidney miRNAs (miR-21, an oncomiR and miR-34a) was further examined in the kidney, liver and testis of rats exposed to 0, 0.1, 1.0 and 10mg/kg AA. Expression of miR-21 was up-regulated in the kidney only, while miR-34a was dose-dependently up-regulated in both the kidney and liver; the expression of miR-21 and miR-34a was unaltered by the AA treatment in the testis. Analysis of cII mutations in the testis of treated rats also was negative. Our results indicate that AA treatment of rats produced dysregulation of a large number of miRNAs in the tumour target tissue and that the up-regulation of miR-21 correlated with the carcinogenicity of AA while the up-regulation of miR-34a correlated with its mutagenicity.
    Mutagenesis 08/2014; DOI:10.1093/mutage/geu027 · 3.50 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Aristolochia ( mădōu ling) is an important genus widely cultivated and had long been known for their extensive use in traditional Chinese medicine. The genus has attracted so much great interest because of their numerous biological activity reports and unique constituents, aristolochic acids (AAs). In 2004, we reviewed the metabolites of Aristolochia species which have appeared in the literature, concerning the isolation, structural elucidation, biological activity and literature references. In addition, the nephrotoxicity of aristolochic acids, biosynthetic studies, ecological adaptation, and chemotaxonomy researches were also covered in the past review. In the present manuscript, we wish to review the various physiologically active compounds of different classes reported from Aristolochia species in the period between 2004 and 2011. In regard to the chemical and biological aspects of the constituents from the Aristolochia genus, this review would address the continuous development in the phytochemistry and the therapeutic application of the Aristolochia species. Moreover, the recent nephrotoxicity studies related to aristolochic acids would be covered in this review and the structure-toxicity relationship would be discussed.
    03/2012; 2(4):249-266.
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Covering: 1960 to 2013Aristolochic acids are known for causing aristolochic acid nephropathy, a renal fibrosis often associated with urothelial carcinoma. Aristolochic acid I and II are considered to be the cause of these nephrotoxic and carcinogenic effects. However a variety of aristolochic acid analogues, including aristolactams and 4,5-dioxoaporphines have been reported. Their implications in aristolochic acid nephropathy have possibly been overlooked. In this report, in vivo and in vitro toxicity and mutagenicity of these three classes of compounds are discussed. Furthermore, the review gives an update of aristolochic acids, aristolactams and 4,5-dioxoaporphines reported between 2003 and 2013 and their biological activities.
    Natural Product Reports 04/2014; DOI:10.1039/c3np70114j · 10.72 Impact Factor