Decision Making by p53: Life versus Death.

Department of Pharmacology, State University of New York, Upstate Medical University, Syracuse, New York.
Molecular and Cellular Pharmacology 01/2010; 2(2):69-77.
Source: PubMed

ABSTRACT Cellular response to DNA damage is multifacted in nature and involves a complex signaling network in which p53 functions as a "molecular node" for converging signals. p53 has been implicated in a variety of cellular processes primarily functioning as a transcription factor and also in a transcription-independent manner. It is rapidly activated following DNA damage with phosphorylation as one of the initial signals. Cellular context as well as the type and severity of DNA damage determine p53 activation code, and its activities are regulated predominantly through protein degradation, post-translational modification and interactions with various cellular co-factors. These events are crucial in decision making by p53 as it has the ability to receive, assess and integrate different signals and route them accordingly to induce cell death or promote cell survival. In this decision making process, its transcriptional role to activate a specific subset of target genes linked to inducing cell cycle arrest or apoptosis is critical that is further fine-tuned by its transcription-independent function. This article reviews the current state of knowledge about the role of p53 in determining the fate of cells that have incurred DNA damage.


Available from: Lingyan Jiang, Dec 19, 2013
  • [Show abstract] [Hide abstract]
    ABSTRACT: Skin cancer incidences are rising worldwide, and one of the major causative factors is excessive exposure to solar ultraviolet radiation (UVR). Annually, ∼5 million skin cancer patients are treated in USA, mostly with nonmelanoma skin cancer (NMSC), which is also frequent in other Western countries. As sunscreens do not provide adequate protection against deleterious effects of UVR, additional and alternative chemoprevention strategies are urgently needed to reduce skin cancer burden. Over the last couple of decades, extensive research has been conducted to understand the molecular basis of skin carcinogenesis, and to identifying novel agents which could be useful in the chemoprevention of skin cancer. In this regard, several natural nontoxic compounds have shown promising efficacy in preventing skin carcinogenesis at initiation, promotion, and progression stages and are considered important in better management of skin cancer. Consistent with this, we and others have studied and established the notable efficacy of natural flavonolignan silibinin against UVB-induced skin carcinogenesis. Extensive preclinical animal and cell culture studies report strong anti-inflammatory, antioxidant, DNA damage repair, immune modulatory, and antiproliferative properties of silibinin. Molecular studies have identified that silibinin targets pleotropic signaling pathways including mitogenic, cell cycle, apoptosis, autophagy, p53, NF-κB, etc. Overall, the skin cancer chemopreventive potential of silibinin is well supported by comprehensive mechanistic studies, suggesting its greater use against UV-induced cellular damages and photocarcinogenesis.
    06/2015; 1(3). DOI:10.1007/s40495-015-0027-9
  • [Show abstract] [Hide abstract]
    ABSTRACT: Autophagy is a highly conserved lysosomal degradation process which can recycle unnecessary or dysfunctional cell organelles and proteins, thereby playing a crucial regulatory role in cell survival and maintenance. It has been widely accepted that autophagy regulates various pathological processes, among which cancer attracts much attention. Autophagy may either promote cancer cell survival by providing energy during unfavourable metabolic circumstance or can induce individual cancer cell death by preventing necrosis and increasing genetic instability. Thus, dual roles of autophagy may determine the destiny of cancer cells and make it an attractive target for small-molecule drug discovery. Collectively, key autophagy-related elements as potential targets, oncogenes mTORC1, class I PI3K and AKT, as well as tumour suppressor class III PI3K, Beclin-1 and p53, have been discussed. In addition, some small molecule drugs, such as rapamycin and its derivatives, rottlerin, PP242 and AZD8055 (targeting PI3K/AKT/mTORC1), spautin-1, and tamoxifen, as well as oridonin and metformin (targeting p53), can modulate autophagic pathways in different types of cancer. All these data will shed new light on targeting the autophagic process for cancer therapy, using small-molecule compounds, to fight cancer in the near future. © 2014 John Wiley & Sons Ltd.
    Cell Proliferation 12/2014; 48(1). DOI:10.1111/cpr.12154 · 3.28 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Among the many mycotoxins, T-2 toxin, citrinin (CTN), patulin (PAT), aflatoxin B1 (AFB1) and ochratoxin A (OTA) are known to have the potential to induce dermal toxicity and/or tumorigenesis in rodent models. T-2 toxin, CTN, PAT and OTA induce apoptosis in mouse or rat skin. PAT, AFB1 and OTA have tumor initiating properties, and OTA is also a tumor promoter in mouse skin. This paper reviews the molecular mechanisms of dermal toxicity and tumorigenesis induced in rodent models by these mycotoxins especially from the viewpoint of oxidative stress-mediated pathways.
    Journal of Toxicologic Pathology 04/2014; 27(1):1-10. DOI:10.1293/tox.2013-0062 · 0.94 Impact Factor