Pretreatment with anti-oxidants sensitizes oxidatively stressed human cancer cells to growth inhibitory effect of suberoylanilide hydroxamic acid (SAHA). Cancer Chemother Pharmacol

Wisconsin Institutes for Medical Research, University of Wisconsin Carbone Comprehensive Cancer Center, Madison, WI 53705, USA.
Cancer Chemotherapy and Pharmacology (Impact Factor: 2.77). 03/2011; 67(3):705-15. DOI: 10.1007/s00280-010-1364-3
Source: PubMed


Most prostate, colon and breast cancer cells are resistant to growth inhibitory effects of suberoylanilide hydroxamic acid (SAHA). We have examined whether the high oxidative stress in these cells causes a loss of SAHA activity and if so, whether pretreatment with an anti-oxidant can sensitize these cells to SAHA.
A DNA-Hoechst dye fluorescence measured cell growth and dichlorfluorescein-diacetate (DCF-DA) dye fluorescence measured reactive oxygen species (ROS). Growth inhibitory and ROS-generating activities of SAHA in androgen-treated or untreated LNCaP cells and PC-3 prostate cancer cells, HT-29 and HCT-115 colon cancer cells, MDA-MB231 breast cancer cells and A549 and NCI-H460 lung cancer cells with or without pretreatment with an anti-oxidant Vitamin E was determined. SAHA activity against LNCaP cells treated with another anti-oxidant N-acetyl cysteine (NAC) was also determined. Liquid chromatography-mass spectrometry (LC-MS) was used to determine intracellular SAHA level.
SAHA treatment markedly inhibits LNCaP cell growth, when the cells are at a low ROS level. SAHA is, however, inactive against the same cell line, when the cells are at a high ROS level. A significant decrease in SAHA level was observed in LNCaP cells with high ROS after 24- and 72-h treatment when compared to cells with low ROS. Vitamin E pretreatment that reduces cellular ROS, synergistically sensitizes oxidatively stressed LNCaP, PC-3, HT-29, HCT-115 and MDA-MB231 cells, but not the A-549 and NCI-H460 cells with low ROS to SAHA. NAC treatment also sensitized androgen-treated LNCaP cells to the growth inhibitory effects of SAHA.
Response to SAHA could be improved by combining anti-oxidants such as Vitamin E with SAHA for the treatment of oxidatively stressed human malignancies that are otherwise resistant to SAHA.

11 Reads
  • Source
    • "Accordingly, addition of antioxidants impairs HDACi cytotoxicity in acute myelogenous leukemia cells [31], [32] or colon cancer cells [38]. In contrast, other studies have demonstrated that antioxidants enhance anti-tumoral effects of HDACi on prostate cancer [39] or melanoma cells [40]. To this regard the role of antioxidants in cancer prevention and cancer therapy is still debated. "
    [Show abstract] [Hide abstract]
    ABSTRACT: We have recently demonstrated that histone deacetylase inhibitor, Vorinostat, applied as a single therapy or in combination with caspase-8 downregulation exhibits high anti-tumoral activity on endometrial carcinoma cell lines. In the present study, we have assessed the signalling processes underlying anti-tumoral effects of Vorinostat. Increasing evidence suggests that reactive oxygen species are responsible for histone deacetylase inhibitor-induced cell killing. We have found that Vorinostat induces formation of reactive oxygen species and DNA damage. To investigate the role of oxidative stress as anti-neoplastic mechanism, we have evaluated the effects of different antioxidants (Bha, Nac and Tiron) on endometrial carcinoma cell line Ishikawa treated with Vorinostat. We show that Bha, Nac and Tiron markedly inhibited the cytotoxic effects of Vorinostat, increasing cell viability in vitro. We found that all three antioxidants did not inhibited accumulation of acetyl Histone H4, so that antioxidants did not inhibit Vorinostat activity. Finally, we have evaluated the effects of antioxidants on anti-tumoral activity of Vorinostat as monotherapy or in combination with caspase-8 downregulation in vivo. Interestingly, antioxidants blocked the reduction of tumour growth caused by Vorinostat, but they were unable to inhibit anti-tumoral activity of Vorinostat plus caspase-8 inhibition.
    PLoS ONE 03/2014; 9(3):e92764. DOI:10.1371/journal.pone.0092764 · 3.23 Impact Factor
  • Source
    • "They argued that vorinostat treatment markedly inhibits growth of LNCaP cells when the cells are at a low ROS and, however, potency of vorinostat was significantly decreased against the same cell line at high ROS level. Pretreatment of vitamin E as an antioxidant reduced cellular ROS level and then synergistically sensitized oxidatively stressed LNCaP cells [43]. They also demonstrated that the potency of vorinostat against cancer cells could be improved by combination with antioxidants . "
    [Show abstract] [Hide abstract]
    ABSTRACT: The aim of this study was to investigate the effect of the combination of vorinostat and epigallocatechin-3-gallate against HuCC-T1 human cholangiocarcinoma cells. A novel chemotherapy strategy is required as cholangiocarcinomas rarely respond to conventional chemotherapeutic agents. Both vorinostat and EGCG induce apoptosis and suppress invasion, migration, and angiogenesis of tumor cells. The combination of vorinostat and EGCG showed synergistic growth inhibitory effects and induced apoptosis in tumor cells. The Bax/Bcl-2 expression ratio and caspase-3 and -7 activity increased, but poly (ADP-ribose) polymerase expression decreased when compared to treatment with each agent alone. Furthermore, invasion, matrix metalloproteinase (MMP) expression, and migration of tumor cells decreased following treatment with the vorinostat and EGCG combination compared to those of vorinostat or EGCG alone. Tube length and junction number of human umbilical vein endothelial cells (HUVECs) decreased as well as vascular endothelial growth factor expression following vorinostat and EGCG combined treatment. These results indicate that the combination of vorinostat and EGCG had a synergistic effect on inhibiting tumor cell angiogenesis potential. We suggest that the combination of vorinostat and EGCG is a novel option for cholangiocarcinoma chemotherapy.
    Evidence-based Complementary and Alternative Medicine 06/2013; 2013:185158. DOI:10.1155/2013/185158 · 1.88 Impact Factor
  • Source
    • "These results suggest that SAHA is relatively non-toxic and may be useful in treating prostate cancer. As most metastatic prostate cancer cells tend to be oxidatively stressed (Halliwell 2006), a recent study by Basu et al. (2011), using LNCaP and PC3 prostate cancer cell lines, showed that the response to SAHA was enhanced by combination treatment with an anti-oxidant like vitamin E and SAHA. Qian et al. (2006) also investigated the effect of another HDACi, panobinostat, in a prostate cancer mouse model. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Prostate cancer is a commonly diagnosed cancer in men and a leading cause of cancer deaths. Whilst the underlying mechanisms leading to prostate cancer are still to be determined, it is evident that both genetic and epigenetic changes contribute to the development and progression of this disease. Epigenetic changes involving DNA hypo- and hypermethylation, altered histone modifications and more recently changes in microRNA expression have been detected at a range of genes associated with prostate cancer. Furthermore, there is evidence that particular epigenetic changes are associated with different stages of the disease. Whilst early detection can lead to effective treatment, and androgen deprivation therapy has a high response rate, many tumours develop towards hormone-refractory prostate cancer, for which there is no successful treatment. Reliable markers for early detection and more effective treatment strategies are, therefore, needed. Consequently, there is a considerable interest in the potential of epigenetic changes as markers or targets for therapy in prostate cancer. Epigenetic modifiers that demethylate DNA and inhibit histone deacetylases have recently been explored to reactivate silenced gene expression in cancer. However, further understanding of the mechanisms and the effects of chromatin modulation in prostate cancer are required. In this review, we examine the current literature on epigenetic changes associated with prostate cancer and discuss the potential use of epigenetic modifiers for treatment of this disease.
    Clinical Epigenetics 08/2011; 2(2):151-69. DOI:10.1007/s13148-011-0041-7 · 4.54 Impact Factor
Show more