Article

Conscious perception of errors and its relation to the anterior insula

Max Planck Institute for Neurological Research, Gleueler Str. 50, 50931, Cologne, Germany.
Brain Structure and Function (Impact Factor: 4.57). 06/2010; 214(5-6):629-43. DOI: 10.1007/s00429-010-0261-1
Source: PubMed

ABSTRACT To detect erroneous action outcomes is necessary for flexible adjustments and therefore a prerequisite of adaptive, goal-directed behavior. While performance monitoring has been studied intensively over two decades and a vast amount of knowledge on its functional neuroanatomy has been gathered, much less is known about conscious error perception, often referred to as error awareness. Here, we review and discuss the conditions under which error awareness occurs, its neural correlates and underlying functional neuroanatomy. We focus specifically on the anterior insula, which has been shown to be (a) reliably activated during performance monitoring and (b) modulated by error awareness. Anterior insular activity appears to be closely related to autonomic responses associated with consciously perceived errors, although the causality and directions of these relationships still needs to be unraveled. We discuss the role of the anterior insula in generating versus perceiving autonomic responses and as a key player in balancing effortful task-related and resting-state activity. We suggest that errors elicit reactions highly reminiscent of an orienting response and may thus induce the autonomic arousal needed to recruit the required mental and physical resources. We discuss the role of norepinephrine activity in eliciting sufficiently strong central and autonomic nervous responses enabling the necessary adaptation as well as conscious error perception.

0 Followers
 · 
108 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Renewal in extinction learning describes the recovery of an extinguished response if the extinction context differs from the context present during acquisition and recall. Attention may have a role in contextual modulation of behavior and contribute to the renewal effect, while noradrenaline (NA) is involved in attentional processing. In this functional magnetic resonance imaging (fMRI) study we investigated the role of the noradrenergic system for behavioral and brain activation correlates of contextual extinction and renewal, with a particular focus upon hippocampus and ventromedial prefrontal cortex (PFC), which have crucial roles in processing of renewal. Healthy human volunteers received a single dose of the NA reuptake inhibitor atomoxetine prior to extinction learning. During extinction of previously acquired cue-outcome associations, cues were presented in a novel context (ABA) or in the acquisition context (AAA). In recall, all cues were again presented in the acquisition context. Atomoxetine participants (ATO) showed significantly faster extinction compared to placebo (PLAC). However, atomoxetine did not affect renewal. Hippocampal activation was higher in ATO during extinction and recall, as was ventromedial PFC activation, except for ABA recall. Moreover, ATO showed stronger recruitment of insula, anterior cingulate, and dorsolateral/orbitofrontal PFC. Across groups, cingulate, hippocampus and vmPFC activity during ABA extinction correlated with recall performance, suggesting high relevance of these regions for processing the renewal effect. In summary, the noradrenergic system appears to be involved in the modification of established associations during extinction learning and thus has a role in behavioral flexibility. The assignment of an association to a context and the subsequent decision on an adequate response, however, presumably operate largely independently of noradrenergic mechanisms.
    Frontiers in Behavioral Neuroscience 02/2015; 9:34. DOI:10.3389/fnbeh.2015.00034 · 4.16 Impact Factor
  • Source
    Frontiers in Psychology 02/2015; 6:102. DOI:10.3389/fpsyg.2015.00102 · 2.80 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The event-related potential (ERP) literature described two error-related brain activities: the error-related negativity (Ne/ERN) and the error positivity (Pe), peaking immediately after the erroneous response. ERP studies on error processing adopted a response-locked approach, thus, the question about the activities preceding the error is still open. In the present study, we tested the hypothesis that the activities preceding the false alarms (FA) are different from those occurring in the correct (responded or inhibited) trials. To this aim, we studied a sample of 36 Go/No-go performers, adopting a stimulus-locked segmentation also including the pre-motor brain activities. Present results showed that neither pre-stimulus nor perceptual activities explain why we commit FA. In contrast, we observed condition-related differences in two pre-response components: the fronto-central N2 and the prefrontal positivity (pP), respectively peaking at 250ms and 310ms after the stimulus onset. The N2 amplitude of FA was identical to that recorded in No-go trials, and larger than Hits. Because the new findings challenge the previous interpretations on the N2, a new perspective is discussed. On the other hand, the pP in the FA trials was larger than No-go and smaller than Go, suggesting an erroneous processing at the stimulus-response mapping level: because this stage triggers the response execution, we concluded that the neural processes underlying the pP were mainly responsible for the subsequent error commission. Finally, sLORETA source analyses of the post-error potentials extended previous findings indicating, for the first time in the ERP literature, the right anterior insula as Pe generator. Copyright © 2015. Published by Elsevier Inc.
    NeuroImage 03/2015; DOI:10.1016/j.neuroimage.2015.03.040 · 6.13 Impact Factor

Full-text (3 Sources)

Download
94 Downloads
Available from
May 31, 2014