Comparison of two dengue NS1 rapid tests for sensitivity, specificity and relationship to viraemia and antibody responses.

Oxford University Clinical Research Unit, Hospital for Tropical Diseases, 190 Ben Ham Tu, District 5, Ho Chi Minh City, Viet Nam.
BMC Infectious Diseases (Impact Factor: 2.56). 01/2010; 10:142. DOI: 10.1186/1471-2334-10-142
Source: PubMed

ABSTRACT Dengue is a major public health problem in tropical and subtropical countries. Rapid and easy diagnosis of dengue can assist patient triage and care-management. The detection of DENV NS1 on rapid lateral flow tests offers a fast route to a presumptive dengue diagnosis but careful evaluations are urgently needed as more and more people use them.
The sensitivity and specificity of the Bio-Rad NS1 Ag Strip and SD Dengue Duo (NS1/IgM/IgG) lateral flow rapid tests were evaluated in a panel of plasma samples from 245 Vietnamese patients with RT-PCR confirmed dengue and 47 with other febrile illnesses.
The NS1 rapid tests had similar diagnostic sensitivities (respectively 61.6% and 62.4%) in confirmed dengue cases but were 100% specific. When IgM/IgG results from the SD Dengue Duo were included in the test interpretation, the sensitivity improved significantly from 62.4% with NS1 alone to 75.5% when NS1 and/or IgM was positive and 83.7% when NS1 and/or IgM and/or IgG was positive. Both NS1 assays were significantly more sensitive for primary than secondary dengue. NS1 positivity was associated with the underlying viraemia as NS1-positive samples had a significantly higher viraemia than NS1-negative samples.
These data suggest that the NS1 test component of these assays are highly specific and have similar levels of sensitivity. The IgM parameter in the SD Duo test improved overall test sensitivity without compromising specificity. The SD Dengue Duo lateral flow rapid test deserves further prospective evaluation in dengue endemic settings.

1 Bookmark
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Commercially available diagnostic test kits for detection of dengue virus (DENV) non-structural protein 1 (NS1) and anti-DENV IgM were evaluated for their sensitivity and specificity and other performance characteristics by a diagnostic laboratory network developed by World Health Organization (WHO), the UNICEF/UNDP/World Bank/WHO Special Programme for Research and Training in Tropical Diseases (TDR) and the Pediatric Dengue Vaccine Initiative (PDVI). Each network laboratory contributed characterized serum specimens for the panels used in the evaluation. Microplate enzyme-linked immunosorbent assay (ELISA) and rapid diagnostic test (RDT formats) were represented by the kits. Each ELISA was evaluated by 2 laboratories and RDTs were evaluated by at least 3 laboratories. The reference tests for IgM anti-DENV were laboratory developed assays produced by the Armed Forces Research Institute for Medical Science (AFRIMS) and the Centers for Disease Control and Prevention (CDC), and the NS1 reference test was reverse transcriptase polymerase chain reaction (RT-PCR). Results were analyzed to determine sensitivity, specificity, inter-laboratory and inter-reader agreement, lot-to-lot variation and ease-of-use. NS1 ELISA sensitivity was 60-75% and specificity 71-80%; NS1 RDT sensitivity was 38-71% and specificity 76-80%; the IgM anti-DENV RDTs sensitivity was 30-96%, with a specificity of 86-92%, and IgM anti-DENV ELISA sensitivity was 96-98% and specificity 78-91%. NS1 tests were generally more sensitive in specimens from the acute phase of dengue and in primary DENV infection, whereas IgM anti-DENV tests were less sensitive in secondary DENV infections. The reproducibility of the NS1 RDTs ranged from 92-99% and the IgM anti-DENV RDTs from 88-94%.
    PLoS Neglected Tropical Diseases 10/2014; 8(10):e3171. · 4.49 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Dengue is one of the most important arboviral infections caused by one of the four dengue serotypes, 1-4.
    Journal of global infectious diseases 07/2014; 6(3):109-13.
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Dengue is a mosquito-borne viral disease that has become more prevalent in the last few decades. Most patients are viremic when they present with symptoms, and early diagnosis of dengue is important in preventing severe clinical complications associated with this disease and also represents a key factor in differential diagnosis. Here, we designed and validated a hydrolysis-probe-based one-step real-time RT-PCR assay that targets the genomes of dengue virus serotypes 1-4. The primers and probe used in our RT-PCR assay were designed to target the 3' untranslated region of all complete genome sequences of dengue virus available in GenBank (n = 3,305). Performance of the assay was evaluated using in vitro transcribed RNA, laboratory-adapted virus strains, external control panels, and clinical specimens. The linear dynamic range was found to be 104-1011 GCE/mL, and the detection limit was between 6.0×102 and 1.1×103 GCE/mL depending on target sequence. The assay did not cross-react with human RNA, nor did it produce false-positive results for other human pathogenic flaviviruses or clinically important etiological agents of febrile illnesses. We used clinical serum samples obtained from returning travelers with dengue-compatible symptomatology (n = 163) to evaluate the diagnostic relevance of our assay, and laboratory diagnosis performed by the RT-PCR assay had 100% positive agreement with diagnosis performed by NS1 antigen detection. In a retrospective evaluation including 60 archived serum samples collected from confirmed dengue cases 1-9 days after disease onset, the RT-PCR assay detected viral RNA up to 9 days after appearance of symptoms. The validation of the RT-PCR assay presented here indicates that this technique can be a reliable diagnostic tool, and hence we suggest that it be introduced as the method of choice during the first 5 days of dengue symptoms.
    PLoS Neglected Tropical Diseases 12/2014; 8(12):e3416. · 4.49 Impact Factor

Full-text (2 Sources)

Available from
May 21, 2014