Article

Cytochrome P450 monooxygenases involved in anthracene metabolism by the white-rot basidiomycete Phanerochaete chrysosporium.

Faculty of Agriculture, Kyushu University, 6-10-1 Hakozaki, Higashi-ku, Fukuoka 812-8581, Japan.
Applied Microbiology and Biotechnology (Impact Factor: 3.81). 08/2010; 87(5):1907-16. DOI: 10.1007/s00253-010-2616-1
Source: PubMed

ABSTRACT Cytochrome P450 monooxygenases (P450s) involved in anthracene metabolism by the white-rot basidiomycete Phanerochaete chrysosporium were identified by comprehensive screening of both catalytic potentials and transcriptomic profiling. Functional screening of P. chrysosporium P450s (PcCYPs) revealed that 14 PcCYP species catalyze stepwise conversion of anthracene to anthraquinone via intermediate formation of anthrone. Moreover, transcriptomic profiling explored using a complementary DNA microarray system demonstrated that 12 PcCYPs are up-regulated in response to exogenous addition of anthracene. Among the up-regulated PcCYPs, five species showed catalytic activity against anthracene. Based upon both catalytic and transcriptional properties, these five species are most likely to play major roles in anthracene metabolic processes in vivo. Thus, the combination of functional screening and a microarray system may provide a novel strategy for obtaining a thorough understanding of the catalytic functions and biological impacts of PcCYPs.

0 Bookmarks
 · 
62 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: We explored the molecular diversity and functional capabilities of cytochrome P450 monooxygenases (P450s) from the brown-rot basidiomycete Postia placenta. Using bioinformatic and experimental data, we found 250 genes of P450s in the whole genome, including 60 putative allelic variants. Phylogenetic analysis revealed the presence of 42 families, including 18 novel families. Comparative phylogenetic analysis of P450s from P. placenta and the white-rot basidiomycete Phanerochaete chrysosporium suggested that vigorous gene duplication and molecular evolution occurred after speciation of basidiomycetes. Among the 250 gene models, 184 were isolated as full-length cDNA and transformed into Saccharomyces cerevisiae to construct a functional library in which recombinant P450s were co-expressed with yeast NADPH-P450 oxidoreductase. Using this library, the catalytic potentials of P450s against a wide variety of compounds were investigated. A functionomic survey allowed the discovery of novel catalytic properties of P. placenta P450s. The phylogenetic diversity of the CYP53 family in P. placenta was clear, and CYP53D2 is capable of converting stilbene derivatives. This is the first report of this peculiar function of the CYP53 family. Our increased understanding of the molecular and functional diversity of P450s in this fungus will facilitate comprehension of metabolic diversity in basidiomycetes and has future biotechnology applications.
    Archives of Microbiology 09/2011; 194(4):243-53. · 1.91 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Streptomyces avermitilis is a well known organism producing avermectin antibiotics, and has been utilized as an industrial host for oxidation bioconversion processes. Recently, gene screening strategies related to bioconversions have received much focus, as attempts are made to optimize oxidation and biodegradation pathways to maximize yield and productivity. Here, we have demonstrated the oxidative metabolisms of three molecules, daidzein, p-coumaric acid and mevastatin, where S. avermitilis converted each substrate to 3',4',7-trihydroxyisoflavone, caffeic acid and hydroxyl-mevastatin to yield 9.3, 32.5 and 15.0 %, respectively. Microarray technology was exploited to investigate genome-wide analysis of gene expression changes, which were induced upon the addition of each substrate. Cytochrome P450 hydroxylases (pteC, cyp28 and olmB), diooxygenases (xylE, cdo1 and putatives) and LuxAB-like oxygenase were identified. One of them, cyp28, was indeed a gene encoding P450 hydroxylase responsible for the oxidative reaction of daidzein. Furthermore, possible electron transfer chain (fdrC → pteE → pteC) supporting cytochrome P450 dependent hydroxylation of daidzein has been suggested based on the interpretation of expression profiles. The result provided a potential application of transcriptomic study on uncovering enzymes involved in oxidative bioconversions of S. avermitilis.
    Bioprocess and Biosystems Engineering 03/2013; · 1.87 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Theoretical and experimental studies of the diffraction of a two-dimensional reflection grating are performed in this paper. Based on the theory of optical scattering, the light field in the Fraunhofer diffraction region is deduced, and the general expression of the diffraction field is given in the form of the wave vectors of the diffracted wave and the incident wave. Then the coordinate of the diffraction order is obtained. The calculation results show that the diffraction distortion of the grating appears when the grating is illuminated by the oblique incident light wave and the distortion is restricted on the diffraction of the grids varying along the direction perpendicular to the plane of incidence. The orbit equation satisfied by the distortion diffraction orders is presented. The experimental results verify adequately this diffraction distortion rule of the grating, and they agree very well with the theoretical results.
    Applied Optics 09/2009; 48(23):4519-25. · 1.69 Impact Factor