Article

Lumbar peritoneal shunt.

Neurosurgery Unit, NSCB Medical College, Jabalpur, Madhya Pradesh, India.
Neurology India (Impact Factor: 1.04). 01/2010; 58(2):179-84. DOI: 10.4103/0028-3886.63778
Source: PubMed

ABSTRACT A lumbar peritoneal (LP) shunt is a technique of cerebrospinal fluid (CSF) diversion from the lumbar thecal sac to the peritoneal cavity. It is indicated under a large number of conditions such as communicating hydrocephalus, idiopathic intracranial hypertension, normal pressure hydrocephalus, spinal and cranial CSF leaks, pseudomeningoceles, slit ventricle syndrome, growing skull fractures which are difficult to treat by conventional methods (when dural defect extends deep in the cranial base or across venous sinuses and in recurrent cases after conventional surgery), raised intracranial pressure following chronic meningitis, persistent bulging of craniotomy site after operations for intracranial tumors or head trauma, syringomyelia and failed endoscopic third ventriculostomy with a patent stoma. In spite of the large number of indications of this shunt and being reasonably good, safe, and effective, very few reports about the LP shunt exist in the literature. This procedure did not get its due importance due to some initial negative reports. This review article is based on search on Google and PubMed. This article is aimed to review indications, complications, results, and comparison of the LP shunt with the commonly practiced ventriculoperitoneal (VP) shunt. Shunt blocks, infections, CSF leaks, overdrainage and acquired Chiari malformation (ACM) are some of the complications of the LP shunt. Early diagnosis of overdrainage complications and ACM as well as timely appropriate treatment especially by programmable shunts could decrease morbidity. Majority of recent reports suggest that a LP shunt is a better alternative to the VP shunt in communicating hydrocephalus. It has an advantage over the VP shunt of being completely extracranial and can be used under conditions other than hydrocephalus when the ventricles are normal sized or chinked. More publications are required to establish its usefulness in the treatment of wide variety of indications.

2 Bookmarks
 · 
472 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Endoscopic third ventriculostomy (ETV) is considered as a treatment of choice for obstructive hydrocephalus. It is indicated in hydrocephalus secondary to congenital aqueductal stenosis, posterior third ventricle tumor, cerebellar infarct, Dandy-Walker malformation, vein of Galen aneurism, syringomyelia with or without Chiari malformation type I, intraventricular hematoma, post infective, normal pressure hydrocephalus, myelomeningocele, multiloculated hydrocephalus, encephalocele, posterior fossa tumor and craniosynostosis. It is also indicated in block shunt or slit ventricle syndrome. Proper Pre-operative imaging for detailed assessment of the posterior communicating arteries distance from mid line, presence or absence of Liliequist membrane or other membranes, located in the prepontine cistern is useful. Measurement of lumbar elastance and resistance can predict patency of cranial subarachnoid space and complex hydrocephalus, which decides an ultimate outcome. Water jet dissection is an effective technique of ETV in thick floor. Ultrasonic contact probe can be useful in selected patients. Intra-operative ventriculo-stomography could help in confirming the adequacy of endoscopic procedure, thereby facilitating the need for shunt. Intraoperative observations of the patent aqueduct and prepontine cistern scarring are predictors of the risk of ETV failure. Such patients may be considered for shunt surgery. Magnetic resonance ventriculography and cine phase contrast magnetic resonance imaging are effective in assessing subarachnoid space and stoma patency after ETV. Proper case selection, post-operative care including monitoring of ICP and need for external ventricular drain, repeated lumbar puncture and CSF drainage, Ommaya reservoir in selected patients could help to increase success rate and reduce complications. Most of the complications develop in an early post-operative, but fatal complications can develop late which indicate an importance of long term follow up.
    Journal of neurosciences in rural practice. 05/2012; 3(2):163-73.
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Treatment options for idiopathic intracranial hypertension (IIH) are lumbar peritoneal shunt (LP), optic nerve fenestration, ventriculoperitoneal shunt and venous stenting. We report our experience of 24 cases of LP shunt. MATERIAL and All the patients had preoperative fundus examination, cerebrospinal fluid pressure estimation and examination, visual field charting, CT scan and MR venography. Postoperative fundus examination and visual field charting was done in all cases. Follow up ranged from 18 to 137 months. Preoperative papilledema, headache, decreased vision, optic atrophy and diplopia were seen in 24, 24, 19, 10 and 11 patients respectively. Shunt failure, CSF leak and temporary over drainage complications in the form of headache were seen in 2, 1 and 15 cases respectively. Vision improved in 10 out of 18 patients. Only one patient, out of 9 who had only perception of light and optic atrophy preoperatively, had improved vision while all patients with vision of finger counting or better without optic atrophy improved after shunt. LP shunt is safe and effective in IIH. Results in terms of improvement in vision were better in good pre operatively vision group.
    Turkish neurosurgery 01/2012; 22(1):21-6. · 0.58 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: In spinal surgery, cerebrospinal fluid (CSF) fistulas attributed to deliberate dural opening (e.g., for tumors, shunts, marsupialization of cysts) or inadvertent/traumatic dural tears (DTs) need to be readily recognized, and appropriately treated. During spinal surgery, the dura may be deliberately opened to resect intradural lesions/tumors, to perform shunts, or to open/marsupialize cysts. DTs, however, may inadvertently occur during primary, but are seen more frequently during revision spinal surgery often attributed to epidural scarring. Other etiologies of CSF fistulas/DTs include; epidural steroid injections, and resection of ossification of the posterior longitudinal ligament (OPLL) or ossification of the yellow ligament (OYL). Whatever the etiology of CSF fistulas or DTs, they must be diagnosed utilizing radioisotope cisternography (RIC), magnetic resonance imaging (MRI), computed axial tomography (CT) studies, and expeditiously repaired. DTs should be repaired utilizing interrupted 7-0 Gore-Tex (W.L. Gore and Associates Inc., Elkton, MD, USA) sutures, as the suture itself is larger than the needle; the larger suture occludes the dural puncture site. Closure may also include muscle patch grafts, dural patches/substitutes (bovine pericardium), microfibrillar collagen (Duragen: Integra Life Sciences Holdings Corporation, Plainsboro, NJ), and fibrin glues or dural sealants (Tisseel: Baxter Healthcare Corporation, Deerfield, IL, USA). Only rarely are lumbar drains and wound-peritoneal and/or lumboperitoneal shunts warranted. DTs or CSF fistulas attributed to primary/secondary spinal surgery, trauma, epidural injections, OPLL, OYL, and other factors, require timely diagnosis (MRI/CT/Cisternography), and appropriate reconstruction.
    Surgical Neurology International 01/2013; 4(Suppl 5):S301-17. · 1.18 Impact Factor

Full-text

View
100 Downloads
Available from
May 17, 2014