Experimental characterization of the low-dose envelope of spot scanning proton beams.

Department of Radiation Physics, The University of Texas M D Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030, USA.
Physics in Medicine and Biology (Impact Factor: 2.92). 06/2010; 55(12):3467-78. DOI: 10.1088/0031-9155/55/12/013
Source: PubMed

ABSTRACT In scanned proton beam radiotherapy, multiple pencil beams are used to deliver the total dose to the target volume. Because the number of such beams can be very large, an accurate dosimetric characterization of every single pencil beam is important to provide adequate input data for the configuration of the treatment planning system. In this work, we present a method to measure the low-dose envelope of single pencil beams, known to play a meaningful role in the dose computation for scanned proton beams. We measured the low-dose proton beam envelope, which extends several centimeters outwards from the center of each single pencil beam, by acquiring lateral dose profile data, down to relative dose levels that were a factor of 10(4) lower than the central axis dose. The overall effect of the low-dose envelope on the total dose delivered by multiple pencil beams was determined by measuring the dose output as a function of field size. We determined that the low-dose envelope can be influential even for fields as large as 20 cm x 20 cm.

  • [Show abstract] [Hide abstract]
    ABSTRACT: The presence of a low-dose envelope, or 'halo', in the fluence profile of a proton spot can increase the output of a pencil beam scanning field by over 10%. This study evaluated whether the Monte Carlo simulation code, TOPAS 1.0-beta 8, based on Geant4.9.6 with its default physics list, can predict the spot halo at depth in phantom by incorporating a halo model within the proton source distribution. Proton sources were modelled using three 2D Gaussian functions, and optimized until simulated spot profiles matched measurements at the phantom surface out to a radius of 100 mm. Simulations were subsequently compared with profiles measured using EBT3 film in Solidwater(®) phantoms at various depths for 100, 115, 150, 180, 210 and 225 MeV proton beams. Simulations predict measured profiles within a 1 mm distance to agreement for 2D profiles extending to the 0.1% isodose, and within 1 mm/1% Gamma criteria over the integrated curve of spot profile as a function of radius. For isodose lines beyond 0.1% of the central spot dose, the simulated primary spot sigma is smaller than the measurement by up to 15%, and can differ by over 1 mm. The choice of particle interaction algorithm and phantom material were found to cause ~1 mm range uncertainty, a maximal 5% (0.3 mm) difference in spot sigma, and maximal 1 mm and ~2 mm distance to agreement in isodoses above and below the 0.1% level, respectively. Based on these observations, therefore, the selection of physics model and the application of Solidwater(®) as water replacement material in simulation and measurement should be used with caution.
    Medical Physics 11/2014; 59(22):6859-73. DOI:10.1088/0031-9155/59/22/6859 · 3.01 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The dose distribution of a pencil beam in a water tank consists of a core, a halo and an aura. The core consists of primary protons which suffer multiple Coulomb scattering (MCS) and slow down by multiple collisions with atomic electrons (Bethe-Bloch theory). The halo consists of charged secondaries, many of them protons, from elastic interactions with H, elastic and inelastic interactions with O, and nonelastic interactions with O. We show that the halo radius is roughly one third of the beam range. The aura consists of neutral secondaries (neutrons and gamma rays) and the charged particles they set in motion. We have measured the core/halo at 177 MeV using a test beam offset in a water tank. The beam monitor was a plane parallel ionization chamber (IC) and the field IC a dose calibrated Exradin T1. Our dose measurements are absolute. We took depth-dose scans at ten displacements from the beam axis ranging from 0 to 10 cm. The dose spans five orders of magnitude, and the transition from halo to aura is obvious. We present model-dependent (MD) and model-independent (MI) fits to these data. The MD fit has 25 parameters, and the goodness of fit (rms (measurement/fit) - 1) is 15%. The MI fit uses cubic spline fits in depth and radius. The goodness of fit is 9%. This fit is more portable and conceptually simpler. We discuss the prevalent parameterization of the core/halo originated by Pedroni et al. [1]. We argue that its use of T(w), a mass stopping power which includes energy deposited by nuclear secondaries, is incorrect. The electromagnetic (Bethe-Bloch) mass stopping power should be used instead. In consequence, 'Bragg peak chamber' measurements and associated corrections are, in our opinion, irrelevant. Furthermore, using T(w) leads to spurious excess dose on the axis of the core around midrange, which may be significant in fields involving relatively few pencil beams.
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The presented work has two goals. First, to demonstrate the feasibility of accurately characterizing a proton radiation field at treatment head exit for Monte Carlo dose calculation of active scanning patient treatments. Second, to show that this characterization can be done based on measured depth dose curves and spot size alone, without consideration of the exact treatment head delivery system. This is demonstrated through calibration of a Monte Carlo code to the specific beam lines of two institutions, Massachusetts General Hospital (MGH) and Paul Scherrer Institute (PSI).Comparison of simulations modeling the full treatment head at MGH to ones employing a parameterized phase space of protons at treatment head exit reveals the adequacy of the method for patient simulations. The secondary particle production in the treatment head is typically below 0.2% of primary fluence, except for low-energy electrons (<0.6 MeV for 230 MeV protons), whose contribution to skin dose is negligible. However, there is significant difference between the two methods in the low-dose penumbra, making full treatment head simulations necessary to study out-of-field effects such as secondary cancer induction.To calibrate the Monte Carlo code to measurements in a water phantom, we use an analytical Bragg peak model to extract the range-dependent energy spread at the two institutions, as this quantity is usually not available through measurements. Comparison of the measured with the simulated depth dose curves demonstrates agreement within 0.5 mm over the entire energy range. Subsequently, we simulate three patient treatments with varying anatomical complexity (liver, head and neck and lung) to give an example how this approach can be employed to investigate site-specific discrepancies between treatment planning system and Monte Carlo simulations.
    Physics in Medicine and Biology 12/2014; 60(2):633-645. DOI:10.1088/0031-9155/60/2/633 · 2.92 Impact Factor