Comparative genomic analysis reveals evidence of two novel Vibrio species closely related to V. cholerae

Maryland Pathogen Research Institute, University of Maryland, College Park, Maryland, USA.
BMC Microbiology (Impact Factor: 2.98). 05/2010; 10:154. DOI: 10.1186/1471-2180-10-154
Source: PubMed

ABSTRACT In recent years genome sequencing has been used to characterize new bacterial species, a method of analysis available as a result of improved methodology and reduced cost. Included in a constantly expanding list of Vibrio species are several that have been reclassified as novel members of the Vibrionaceae. The description of two putative new Vibrio species, Vibrio sp. RC341 and Vibrio sp. RC586 for which we propose the names V. metecus and V. parilis, respectively, previously characterized as non-toxigenic environmental variants of V. cholerae is presented in this study.
Based on results of whole-genome average nucleotide identity (ANI), average amino acid identity (AAI), rpoB similarity, MLSA, and phylogenetic analysis, the new species are concluded to be phylogenetically closely related to V. cholerae and V. mimicus. Vibrio sp. RC341 and Vibrio sp. RC586 demonstrate features characteristic of V. cholerae and V. mimicus, respectively, on differential and selective media, but their genomes show a 12 to 15% divergence (88 to 85% ANI and 92 to 91% AAI) compared to the sequences of V. cholerae and V. mimicus genomes (ANI <95% and AAI <96% indicative of separate species). Vibrio sp. RC341 and Vibrio sp. RC586 share 2104 ORFs (59%) and 2058 ORFs (56%) with the published core genome of V. cholerae and 2956 (82%) and 3048 ORFs (84%) with V. mimicus MB-451, respectively. The novel species share 2926 ORFs with each other (81% Vibrio sp. RC341 and 81% Vibrio sp. RC586). Virulence-associated factors and genomic islands of V. cholerae and V. mimicus, including VSP-I and II, were found in these environmental Vibrio spp.
Results of this analysis demonstrate these two environmental vibrios, previously characterized as variant V. cholerae strains, are new species which have evolved from ancestral lineages of the V. cholerae and V. mimicus clade. The presence of conserved integration loci for genomic islands as well as evidence of horizontal gene transfer between these two new species, V. cholerae, and V. mimicus suggests genomic islands and virulence factors are transferred between these species.


Available from: Christopher J Grim, May 20, 2015
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: In this work, we used the eel (Anguilla anguilla) as an animal model to test the hypothesis of Barr et al. about the putative role of the epidermal mucosa as a phage enrichment layer. To this end, we analyzed the microbial content of the skin mucus of wild and farmed eels by using a metagenomic approach. We found a great abundance of replicating phage genomes (concatemers) in all the samples. They were assembled in four complete genomes of three Myovirus and one Podovirus. We also found evidences that ΦKZ and Podovirus phages could be part of the resident microbiota associated to the eel mucosal surface and persist on them over the time. Moreover, the viral abundance estimated by epiflorescent counts and by metagenomic recruitment from eel mucosa was higher than that of the surrounding water. Taken together, our results support the hypothesis that claims a possible role of phages in the animal mucus as agents controlling bacterial populations, including pathogenic species, providing a kind of innate immunity.
    Frontiers in Microbiology 01/2015; 6(3). DOI:10.3389/fmicb.2015.00003 · 3.94 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Microbial taxonomy should provide adequate descriptions of bacterial, archaeal, and eukaryotic microbial diversity in ecological, clinical, and industrial environments. Its cornerstone, the prokaryote species has been re-evaluated twice. It is time to revisit polyphasic taxonomy, its principles, and its practice, including its underlying pragmatic species concept. Ultimately, we will be able to realize an old dream of our predecessor taxonomists and build a genomic-based microbial taxonomy, using standardized and automated curation of high-quality complete genome sequences as the new gold standard.
    Archives of Microbiology 12/2014; 197(3). DOI:10.1007/s00203-014-1071-2 · 1.86 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Vibrio mimicus is a bacterium that causes gastroenteritis; it is closely related to Vibrio cholerae, and can cause acute diarrhea like cholera- or dysentery-type diarrhea. It is distributed worldwide. Factors associated with virulence (such as hemolysins, enterotoxins, proteases, phospholipases, aerobactin, and hemagglutinin) have been identified; however, its pathogenicity mechanism is still unknown. In pathogenic Vibrio species such as V. cholerae, Vibrio. parahaemolyticus and Vibrio vulnificus, capsule, biofilms, lateral flagellum, and type IV pili are structures described as essential for pathogenicity. These structures had not been described in V. mimicus until this work. We used 20 V. mimicus strains isolated from water (6), oyster (9), and fish (5) samples and we were able to identify the capsule, biofilm, lateral flagellum, and type IV pili through phenotypic tests, electron microscopy, PCR, and sequencing. In all tested strains, we observed and identified the presence of capsular exopolysaccharide, biofilm formation in an in vitro model, as well as swarming, multiple flagellation, and pili. In addition, we identified homologous genes to those described in other bacteria of the genus in which these structures have been found. Identification of these structures in V. mimicus is a contribution to the biology of this organism and can help to reveal its pathogenic behavior.
    Microbial Pathogenesis 09/2014; 76. DOI:10.1016/j.micpath.2014.09.012 · 2.00 Impact Factor