Comparative genomic analysis reveals evidence of two novel Vibrio species closely related to V. cholerae

Maryland Pathogen Research Institute, University of Maryland, College Park, Maryland, USA.
BMC Microbiology (Impact Factor: 2.98). 05/2010; 10:154. DOI: 10.1186/1471-2180-10-154
Source: DOAJ

ABSTRACT In recent years genome sequencing has been used to characterize new bacterial species, a method of analysis available as a result of improved methodology and reduced cost. Included in a constantly expanding list of Vibrio species are several that have been reclassified as novel members of the Vibrionaceae. The description of two putative new Vibrio species, Vibrio sp. RC341 and Vibrio sp. RC586 for which we propose the names V. metecus and V. parilis, respectively, previously characterized as non-toxigenic environmental variants of V. cholerae is presented in this study.
Based on results of whole-genome average nucleotide identity (ANI), average amino acid identity (AAI), rpoB similarity, MLSA, and phylogenetic analysis, the new species are concluded to be phylogenetically closely related to V. cholerae and V. mimicus. Vibrio sp. RC341 and Vibrio sp. RC586 demonstrate features characteristic of V. cholerae and V. mimicus, respectively, on differential and selective media, but their genomes show a 12 to 15% divergence (88 to 85% ANI and 92 to 91% AAI) compared to the sequences of V. cholerae and V. mimicus genomes (ANI <95% and AAI <96% indicative of separate species). Vibrio sp. RC341 and Vibrio sp. RC586 share 2104 ORFs (59%) and 2058 ORFs (56%) with the published core genome of V. cholerae and 2956 (82%) and 3048 ORFs (84%) with V. mimicus MB-451, respectively. The novel species share 2926 ORFs with each other (81% Vibrio sp. RC341 and 81% Vibrio sp. RC586). Virulence-associated factors and genomic islands of V. cholerae and V. mimicus, including VSP-I and II, were found in these environmental Vibrio spp.
Results of this analysis demonstrate these two environmental vibrios, previously characterized as variant V. cholerae strains, are new species which have evolved from ancestral lineages of the V. cholerae and V. mimicus clade. The presence of conserved integration loci for genomic islands as well as evidence of horizontal gene transfer between these two new species, V. cholerae, and V. mimicus suggests genomic islands and virulence factors are transferred between these species.

Download full-text


Available from: Christopher J Grim, Jul 07, 2015
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Among available genome relatedness indices, average nucleotide identity (ANI) is one of the most robust measurements of genomic relatedness between strains, and has great potential in the taxonomy of bacteria and archaea as a substitute for the labour-intensive DNA-DNA hybridization (DDH) technique. An ANI threshold range (95-96 %) for species demarcation had previously been suggested based on comparative investigation between DDH and ANI values, albeit with rather limited datasets. Furthermore, its generality was not tested on all lineages of prokaryotes. Here, we investigated the overall distribution of ANI values generated by pairwise comparison of 6787 genomes of prokaryotes belonging to 22 phyla to see whether the suggested range can be applied to all species. There was an apparent distinction in the overall ANI distribution between intra- and interspecies relationships at around 95-96 % ANI. We went on to determine which level of 16S rRNA gene sequence similarity corresponds to the currently accepted ANI threshold for species demarcation using over one million comparisons. A twofold cross-validation statistical test revealed that 98.65 % 16S rRNA gene sequence similarity can be used as the threshold for differentiating two species, which is consistent with previous suggestions (98.2-99.0 %) derived from comparative studies between DDH and 16S rRNA gene sequence similarity. Our findings should be useful in accelerating the use of genomic sequence data in the taxonomy of bacteria and archaea.
    International Journal of Systematic and Evolutionary Microbiology 02/2014; 64(Pt 2):346-51. DOI:10.1099/ijs.0.059774-0 · 2.80 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Glycerol-3-phosphate (sn-glycerol-3-P, G3P) acyltransferase catalyses the first committed step in the biosynthesis of membrane phospholipids, the acylation of G3P to form 1-acyl G3P (lysophosphatidic acid). The paradigm G3P acyltransferase is the Escherichia coli plsB gene product which acylates position-1 of G3P using fatty acids in thioester linkage to either acyl carrier protein (ACP) or CoA as acyl donors. Although the E. coli plsB gene was discovered about 30 years ago, no evidence for transcriptional control of its expression has been reported. However A.E. Kazakov and co-workers (J Bacteriol 2009; 191: 52-64) reported the presence of a putative FadR binding site upstream of the candidate plsB genes of Vibrio cholerae and three other Vibrio species suggesting that plsB might be regulated by FadR, a GntR family transcription factor thus far known only to regulate fatty acid synthesis and degradation. We report that the V. cholerae plsB homologue restored growth of E. coli strain BB26-36 which is a G3P auxotroph due to an altered G3P acyltransferase activity. The plsB promoter was also mapped and the predicted FadR-binding palindrome was found to span positions -19 to -35, upstream of the transcription start site. Gel shift assays confirmed that both V. cholerae FadR and E. coli FadR bound the V. cholerae plsB promoter region and binding was reversed upon addition of long-chain fatty acyl-CoA thioesters. The expression level of the V. cholerae plsB gene was elevated two- to threefold in an E. coli fadR null mutant strain indicating that FadR acts as a repressor of V. cholerae plsB expression. In both E. coli and V. cholerae the β-galactosidase activity of transcriptional fusions of the V. cholerae plsB promoter to lacZ increased two- to threefold upon supplementation of growth media with oleic acid. Therefore, V. cholerae co-ordinates fatty acid metabolism with 1-acyl G3P synthesis.
    Molecular Microbiology 08/2011; 81(4):1020-33. DOI:10.1111/j.1365-2958.2011.07748.x · 5.03 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Many speech rate conversion methods have been proposed. In a speech rate conversion, there are two kinds of processes: one is a contraction of a speech period and the other is an extension. Specially, the extension of speech period is useful for aged persons to listen easily without changing its composed frequencies of speech and personality. In these methods, the extraction of an accurate pitch period in a voice is needed. However, an accurate pitch period extraction is very complicated. This paper proposes a speech rate conversion without the extraction of an accurate pitch period. As a result, the constructed speech by the proposed method gives a better quality than other convention methods, according to the calculation of power weighted LPC cepstrum distance and the percent error of its output sample numbers
    Industrial Electronics Society, 2000. IECON 2000. 26th Annual Confjerence of the IEEE; 02/2000