Article

Kchannel openers restore verapamil-inhibited lung fluid resolution and transepithelial ion transport

Department of Biochemistry, University of Texas Health Science Center at Tyler, Tyler, TX 75708, USA.
Respiratory research (Impact Factor: 3.38). 05/2010; 11(1):65. DOI: 10.1186/1465-9921-11-65
Source: PubMed

ABSTRACT Lung epithelial Na+ channels (ENaC) are regulated by cell Ca2+ signal, which may contribute to calcium antagonist-induced noncardiogenic lung edema. Although K+ channel modulators regulate ENaC activity in normal lungs, the therapeutical relevance and the underlying mechanisms have not been completely explored. We hypothesized that K+ channel openers may restore calcium channel blocker-inhibited alveolar fluid clearance (AFC) by up-regulating both apical and basolateral ion transport.
Verapamil-induced depression of heterologously expressed human alphabetagamma ENaC in Xenopus oocytes, apical and basolateral ion transport in monolayers of human lung epithelial cells (H441), and in vivo alveolar fluid clearance were measured, respectively, using the two-electrode voltage clamp, Ussing chamber, and BSA protein assays. Ca2+ signal in H441 cells was analyzed using Fluo 4AM.
The rate of in vivo AFC was reduced significantly (40.6+/-6.3% of control, P<0.05, n=12) in mice intratracheally administrated verapamil. KCa3.1 (1-EBIO) and KATP (minoxidil) channel openers significantly recovered AFC. In addition to short-circuit current (Isc) in intact H441 monolayers, both apical and basolateral Isc levels were reduced by verapamil in permeabilized monolayers. Moreover, verapamil significantly altered Ca2+ signal evoked by ionomycin in H441 cells. Depletion of cytosolic Ca2+ in alphabetagamma ENaC-expressing oocytes completely abolished verapamil-induced inhibition. Intriguingly, KV (pyrithione-Na), K Ca3.1 (1-EBIO), and KATP (minoxidil) channel openers almost completely restored the verapamil-induced decrease in Isc levels by diversely up-regulating apical and basolateral Na+ and K+ transport pathways.
Our observations demonstrate that K+ channel openers are capable of rescuing reduced vectorial Na+ transport across lung epithelial cells with impaired Ca2+ signal.

Download full-text

Full-text

Available from: Hong-Long Ji, Feb 17, 2014
0 Followers
  • [Show abstract] [Hide abstract]
    ABSTRACT: Epithelial sodium channels (ENaC) govern transepithelial salt and fluid homeostasis. ENaC contributes to polarization, apoptosis, epithelial-mesenchymal transformation etc. Fibrinolytic proteases play a crucial role in virtually all of these processes and are elaborated by the airway epithelium. We hypothesized that urokinase-like plasminogen activator (uPA) regulates ENaC function in airway epithelial cells and tested that possibility in primary murine tracheal epithelial cells (MTE). Both basal and cAMP-activated Na(+) flow through ENaC were significantly reduced in monolayers of uPA-deficient cells. The reduction in ENaC activity was further confirmed in basolateral membrane permeabilized cells. A decrease in the Na(+)/K(+)-ATPase activity in the basolateral membrane could contribute to the attenuation of ENaC function in intact monolayer cells. Dysfunctional fluid resolution was seen in uPA-disrupted cells. Administration of uPA and plasmin partially restores ENaC activity and fluid re-absorption by MTEs. ERK1/2, but not Akt phosphorylation was observed in the cells and lungs of uPA-deficient mice. On the other hand, cleavage of γ ENaC is significantly depressed in the lungs of uPA knockout mice vs those of wild type controls. Expression of caspase 8, however, did not differ between wild type and uPA(-/-) mice. In addition, uPA deficiency did not alter transepithelial resistance. Taken together, the mechanisms for the regulation of ENaC by uPA in MTEs include augmentation of Na(+)/K(+)-ATPase, proteolysis, and restriction of ERK1/2 phosphorylation. We demonstrate for the first time that ENaC may serve as a downstream signaling target by which uPA controls the biophysical profiles of airway fluid and epithelial function.
    AJP Lung Cellular and Molecular Physiology 08/2014; 307(8). DOI:10.1152/ajplung.00126.2014 · 4.04 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: External Na(+) self-inhibition is an intrinsic feature of epithelial sodium channels (ENaC). Cpt-cAMP regulates heterologous guinea pig but not rat αβγ ENaC in a ligand-gated manner. We hypothesized that cpt-cAMP may eliminate the self-inhibition of human ENaC thereby open channels. Regulation of self-inhibition by this compound in oocytes was analyzed using the two-electrode voltage clamp and Ussing chamber setups. External cpt-cAMP stimulated human but not rat and murine αβγ ENaC in a dose- and external Na(+) concentration-dependent fashion. Intriguingly, cpt-cAMP activated human δβγ more potently than αβγ channels, suggesting that structural diversity in ectoloop between human α, δ, and those ENaC of other species determines the stimulating effects of cpt-cAMP. Cpt-cAMP increased the ratio of stationary and maximal currents. Mutants having abolished self-inhibition (β(ΔV348) and γ(H233R)) almost completely eliminated cpt-cAMP mediated activation of ENaC. On the other hand, mutants both enhancing self-inhibition and elevating cpt-cAMP sensitivity increased the stimulating effects of the compound. This compound, however, could not activate already fully opened channels, e.g., degenerin mutation (αβ(S520C)γ) and the proteolytically cleaved ENaC by plasmin. Cpt-cAMP activated native ENaC to the same extent as that for heterologous ENaC in human lung epithelial cells. Our data demonstrate that cpt-cAMP, a broadly used PKA activator, stimulates human αβγ and δβγ ENaC channels by relieving self-inhibition.
    Biochimica et Biophysica Acta 03/2011; 1808(7):1818-26. DOI:10.1016/j.bbamem.2011.03.004 · 4.66 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Mucociliary clearance is the primary innate physical defense mechanism against inhaled pathogens and toxins. Vectorial ion transport, primarily sodium absorption and anion secretion, by airway epithelial cells supports mucociliary clearance. This is evidenced by diseases of abnormal ion transport such as cystic fibrosis and pseudohypoaldosteronism that are characterized by changes in mucociliary clearance. Sodium absorption and chloride secretion in human bronchial epithelial cells depend on potassium channel activity, which creates a favorable electrochemical gradient for both by hyperpolarizing the apical plasma membrane. Although the role of basolateral membrane potassium channels is firmly established and extensively studied, a role for apical membrane potassium channels has also been described. Here, we demonstrate that bupivacaine and quinidine, blockers of four-transmembrane domain, two-pore potassium (K2P) channels, inhibit both amiloride-sensitive sodium absorption and forskolin-stimulated anion secretion in polarized, normal human bronchial epithelial cells at lower concentrations when applied to the mucosal surface than when applied to the serosal surface. Transcripts from four genes, KCNK1 (TWIK-1), KCNK2 (TREK-1), KCNK5 (TASK-2), and KCNK6 (TWIK-2), encoding K2P channels were identified by RT-PCR. Protein expression at the apical membrane was confirmed by immunofluorescence. Our data provide further evidence that potassium channels, in particular K2P channels, are expressed and functional in the apical membrane of airway epithelial cells where they may be targets for therapeutic manipulation.
    AJP Lung Cellular and Molecular Physiology 09/2011; 302(1):L4-L12. DOI:10.1152/ajplung.00102.2011 · 4.04 Impact Factor