Nanostructured Assemblies for Dental Application

Institut National de la Sante et de la Recherche Medicale (INSERM), Unite 977, 11 rue Humann, Strasbourg, France.
ACS Nano (Impact Factor: 12.88). 06/2010; 4(6):3277-87. DOI: 10.1021/nn100713m
Source: PubMed


Millions of teeth are saved each year by root canal therapy. Although current treatment modalities offer high levels of success for many conditions, an ideal form of therapy might consist of regenerative approaches in which diseased or necrotic pulp tissues are removed and replaced with healthy pulp tissue to revitalize teeth. Melanocortin peptides (alpha-MSH) possess anti-inflammatory properties in many acute and chronic inflammatory models. Our recent studies have shown that alpha-MSH covalently coupled to poly-l-glutamic acid (PGA-alpha-MSH) retains anti-inflammatory properties on rat monocytes. This study aimed to define the effects of PGA-alpha-MSH on dental pulp fibroblasts. Lipopolysaccharide (LPS)-stimulated fibroblasts incubated with PGA-alpha-MSH showed an early time-dependent inhibition of TNF-alpha, a late induction of IL-10, and no effect on IL-8 secretion. However, in the absence of LPS, PGA-alpha-MSH induced IL-8 secretion and proliferation of pulp fibroblasts, whereas free alpha-MSH inhibited this proliferation. Thus, PGA-alpha-MSH has potential effects in promoting human pulp fibroblast adhesion and cell proliferation. It can also reduce the inflammatory state of LPS-stimulated pulp fibroblasts observed in gram-negative bacterial infections. These effects suggest a novel use of PGA-alpha-MSH as an anti-inflammatory agent in the treatment of endodontic lesions. To better understand these results, we have also used the multilayered polyelectrolyte films as a reservoir for PGA-alpha-MSH by using not only PLL (poly-l-lysine) but also the Dendri Graft poly-l-lysines (DGL(G4)) to be able to adsorb more PGA-alpha-MSH. Our results indicated clearly that, by using PGA-alpha-MSH, we increase not only the viability of cells but also the proliferation. We have also analyzed at the nanoscale by atomic force microscopy these nanostructured architectures and shown an increase of thickness and roughness in the presence of PGA-alpha-MSH incorporated into the multilayered film (PLL-PGA-alpha-MSH)(10) or (DGL(G4)-PGA-alpha-MSH)(10) in accordance with the increase of the proliferation of the cells growing on the surface of these architectures. We report here the first use of nanostructured and functionalized multilayered films containing alpha-MSH as a new active biomaterial for endodontic regeneration.

Download full-text


Available from: Sophie C Gangloff,
  • Source
    • "Poly-l-glutamic acid (PGA) Covalently coupled to PGA Fioretti et al. 2010 161 PAR1 peptide thrombin receptor agonist (PAR1-AP) "
    [Show abstract] [Hide abstract]
    ABSTRACT: Presently, orthopedic and oral/maxillofacial implants represent a combined $2.8 billion market, a figure expected to experience significant and continued growth. Although traditional permanent implants have been proved clinically efficacious, they are also associated with several drawbacks, including secondary revision and removal surgeries. Non-permanent, biodegradable implants offer a promising alternative for patients, as they provide temporary support and degrade at a rate matching tissue formation, and thus, eliminate the need for secondary surgeries. These implants have been in clinical use for nearly 25 years, competing directly with, or maybe even exceeding, the performance of permanent implants. The initial implantation of biodegradable materials, as with permanent materials, mounts an acute host inflammatory response. Over time, the implant degradation profile and possible degradation product toxicity mediate long-term biodegradable implant-induced inflammation. However, unlike permanent implants, this inflammation is likely to cease once the material disappears. Implant-mediated inflammation is a critical determinant for implant success. Thus, for the development of a proactive biodegradable implant that has the ability to promote optimal bone regeneration and minimal detrimental inflammation, a thorough understanding of short- and long-term inflammatory events is required. Here, we discuss an array of biodegradable orthopedic implants, their associated short- and long- term inflammatory effects, and methods to mediate these inflammatory events.
    Journal of Long-Term Effects of Medical Implants 01/2011; 21(2):93-122. DOI:10.1615/JLongTermEffMedImplants.v21.i2.10
  • [Show abstract] [Hide abstract]
    ABSTRACT: Tissue engineering is increasingly being recognized as a beneficial means for lessening the global disease burden. One strategy of tissue engineering is to replace lost tissues or organs with polymeric scaffolds that contain specialized populations of living cells, with the goal of regenerating tissues to restore normal function. Typical constructs for tissue engineering employ biocompatible and degradable polymers, along with organ-specific and tissue-specific cells. Once implanted, the construct guides the growth and development of new tissues; the polymer scaffold degrades away to be replaced by healthy functioning tissue. The ideal biomaterial for tissue engineering not only defends against disease and supports weakened tissues or organs, it also provides the elements required for healing and repair, stimulates the body's intrinsic immunological and regenerative capacities, and seamlessly interacts with the living body. Tissue engineering has been investigated for virtually every organ system in the human body. This review describes the potential of tissue engineering to alleviate disease, as well as the latest advances in tissue regeneration. The discussion focuses on three specific clinical applications of tissue engineering: cardiac tissue regeneration for treatment of heart failure; nerve regeneration for treatment of stroke; and lung regeneration for treatment of chronic obstructive pulmonary disease.
    Biotechnology Journal 12/2010; 5(12):1309-23. DOI:10.1002/biot.201000230 · 3.49 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Assembling polyelectrolyte multilayers in a bottom-up approach is reported for polymers, particles, nanoparticles, and carbon nanotubes. Effects of polyelectrolyte multilayers on evaporative self-assembly of particles, which are of interest to a number of applications including photonic crystals, films and substrates, are investigated. Polyelectrolyte multilayer coatings bring multifunctionality to spherical particles and planar films. Studying the construction of polyelectrolyte assemblies is convenient in the planar layout: it is reported here for incorporation of gold and magnetic nanoparticles as well as of carbon nanotubes. Gold nanoparticles concentration is controlled within the films. Potential applications of both spherical structures and planar films are highlighted.
    Polymers 12/2010; 2(4). DOI:10.3390/polym2040690 · 3.68 Impact Factor
Show more