Article

TNF Receptors Support Murine Hematopoietic Progenitor Function in the Early Stages of Engraftment

Frankel Laboratory, Center for Stem Cell Research, Schneider Children's Medical Center of Israel, Petach Tikva, Israel.
Stem Cells (Impact Factor: 7.7). 01/2010; 28(7):1270-80. DOI: 10.1002/stem.448
Source: PubMed

ABSTRACT Tumor necrosis factor (TNF) family receptors/ligands are important participants in hematopoietic homeostasis, in particular as essential negative expansion regulators of differentiated clones. As a prominent injury cytokine, TNF-alpha has been traditionally considered to suppress donor hematopoietic stem and progenitor cell function after transplantation. We monitored the involvement of TNF receptors (TNF-R) 1 and 2 in murine hematopoietic cell engraftment and their inter-relationship with Fas. Transplantation of lineage-negative (lin(-)) bone marrow cells (BMC) from TNF receptor-deficient mice into wild-type recipients showed defective early engraftment and loss of durable hematopoietic contribution upon recovery of host hematopoiesis. Consistently, cells deficient in TNF receptors had reduced competitive capacity as compared to wild-type progenitors. The TNF receptors were acutely upregulated in bone marrow (BM)-homed donor cells (wild-type) early after transplantation, being expressed in 60%-75% of the donor cells after 6 days. Both TNF receptors were detected in fast cycling, early differentiating progenitors, and were ubiquitously expressed in the most primitive progenitors with long-term reconstituting potential (lin(-)c-kit(+) stem cell antigen (SCA)-1(+)). BM-homed donor cells were insensitive to apoptosis induced by TNF-alpha and Fas-ligand and their combination, despite reciprocal inductive cross talk between the TNF and Fas receptors. The engraftment supporting effect of TNF-alpha is attributed to stimulation of progenitors through TNF-R1, which involves activation of the caspase cascade. This stimulatory effect was not observed for TNF-R2, and this receptor did not assume redundant stimulatory function in TNFR1-deficient cells. It is concluded that TNF-alpha plays a tropic role early after transplantation, which is essential to successful progenitor engraftment.

0 Followers
 · 
119 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The immune response against a variety of pathogens can lead to activation of blood formation at ectopic sites, a process termed extramedullary hematopoiesis (EMH). The underlying mechanisms of EMH have been enigmatic. Investigating splenic EMH in mice infected with murine cytomegalovirus (MCMV), we find that, while cells of the adaptive immune system were dispensable for EMH, natural killer (NK) cells were essential. EMH required recognition of infected cells via activating NK cell receptors Ly49H or NKG2D, and correspondingly, viral interference with NK cell recognition abolished EMH. Surprisingly, development of EMH was not induced by NK cell-derived cytokines but was dependent on perforin-mediated cytotoxicity in order to control virus spread. Spreading virus reduced the numbers of F4/80(+) macrophages that were crucial for inflammatory EMH. Hence, whereas MCMV suppresses inflammation-induced EMH, NK cells confine virus spread, thereby protecting extramedullary hematopoietic niches and facilitating EMH.
    Cell host & microbe 05/2013; 13(5):535-545. DOI:10.1016/j.chom.2013.04.007 · 12.19 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: In the setting of hematological neoplasms, changes in the bone marrow (BM) stroma might arise from pressure exerted by the neoplastic clone in shaping a supportive microenvironment, or from chronic perturbation of the BM homeostasis. Under such conditions, alterations in the composition of the BM stroma can be profound, and could emerge as relevant prognostic factors. In this Review, we delineate the multifaceted contribution of the BM stroma to the pathobiology of several hematological neoplasms, and discuss the impact of stromal modifications on the natural course of these diseases. Specifically, we highlight the involvement of BM stromal components in lymphoid and myeloid malignancies, and present the most relevant processes responsible for remodeling the BM stroma. The role of bystander BM stromal elements in the setting of hematological neoplasms is discussed, strengthening the rationale for treatment strategies that target the BM stroma.
    Nature Reviews Clinical Oncology 03/2011; 8(8):456-66. DOI:10.1038/nrclinonc.2011.31 · 15.70 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: TNF-α has been suggested to exert detrimental effects on hematopoietic progenitor function that might limit the success of transplants. In this study we assessed the influences of TNF-α and its two cognate receptors on the function of fresh umbilical cord blood (UCB) and cryopreserved mobilized peripheral blood (mPB). CD34(+) progenitors from both sources are less susceptible to spontaneous apoptosis than lineage-committed cells, and are not induced into apoptosis by TNF-α. Consequently, the activity of UCB-derived SCID reconstituting cells and long-term culture initiating cells is unaffected by this cytokine. On the contrary, transient exposure of cells from both sources to TNF-α stimulates the activity of myeloid progenitors, which persists in vivo in UCB cell transplants. Progenitor stimulation is selectively mediated by TNF-R1 and involves activation of caspase-8, without redundant activity of TNF-R2. Despite significant differences between fresh UCB cells and cryopreserved mPB cells in susceptibility to apoptosis and time to activation, TNF-α is primarily involved in tropic signaling in hematopoietic progenitors from both sources. Cytokine-mediated tropism cautions against TNF-α neutralization under conditions of stress hematopoiesis, and may be particularly beneficial in overcoming the limitations of UCB cell transplants.
    Stem Cells 01/2013; 31(1). DOI:10.1002/stem.1259 · 7.70 Impact Factor