NF1 Inactivation in Adult Acute Myelogenous Leukemia

Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA.
Clinical Cancer Research (Impact Factor: 8.19). 08/2010; 16(16):4135-47. DOI: 10.1158/1078-0432.CCR-09-2639
Source: PubMed

ABSTRACT This study was conducted to identify novel genes with importance to the biology of adult acute myelogenous leukemia (AML).
We analyzed DNA from highly purified AML blasts and paired buccal cells from 95 patients for recurrent genomic microdeletions using ultra-high density Affymetrix single nucleotide polymorphism 6.0 array-based genomic profiling.
Through fine mapping of microdeletions on 17q, we derived a minimal deleted region of approximately 0.9-Mb length that harbors 11 known genes; this region includes Neurofibromin 1 (NF1). Sequence analysis of all NF1 coding exons in the 11 AML cases with NF1 copy number changes identified acquired truncating frameshift mutations in two patients. These NF1 mutations were already present in the hematopoetic stem cell compartment. Subsequent expression analysis of NF1 mRNA in the entire AML cohort using fluorescence-activated cell sorting sorted blasts as a source of RNA identified six patients (one with a NF1 mutation) with absent NF1 expression. The NF1 null states were associated with increased Ras-bound GTP, and short hairpin RNA-mediated NF1 suppression in primary AML blasts with wild-type NF1 facilitated colony formation in methylcellulose. Primary AML blasts without functional NF1, unlike blasts with functional NF1, displayed sensitivity to rapamycin-induced apoptosis, thus identifying a dependence on mammalian target of rapamycin (mTOR) signaling for survival. Finally, colony formation in methylcellulose ex vivo of NF1 null CD34+/CD38- cells sorted from AML bone marrow samples was inhibited by low-dose rapamycin.
NF1 null states are present in 7 of 95 (7%) of adult AML and delineate a disease subset that could be preferentially targeted by Ras or mammalian target of rapamycin-directed therapeutics.

  • [Show abstract] [Hide abstract]
    ABSTRACT: Mutations of tumor suppressor Nf1 gene deregulate Ras-mediated signaling, which confers the predisposition for developing benign or malignant tumors. Inhibition of protein kinase C (PKC) was shown to be in synergy with aberrant Ras for the induction of apoptosis in various types of cancer cells. However, it has not been investigated whether loss of PKC is lethal for Nf1-deficient cells. In this study, using HMG (3-hydroxy-3-methylgutaryl, a PKC inhibitor), we demonstrate that the inhibition of PKC by HMG treatment triggered a persistently mitotic arrest, resulting in the occurrence of mitotic catastrophe in Nf1-deficient ST8814 cells. However, the introduction of the Nf1 effective domain gene into ST8814 cells abolished this mitotic crisis. In addition, HMG injection significantly attenuated the growth of the xenografted ST8814 tumors. Moreover, Chk1 was phosphorylated, accompanied with the persistent increase of cyclin B1 expression in HMG-treated ST8814 cells. The knockdown of Chk1 by the siRNA prevented the Nf1-deficient cells from undergoing HMG-mediated mitotic arrest as well as mitotic catastrophe. Thus, our data suggested that the suppression of PKC activates the Chk1-mediated mitotic exit checkpoint in Nf1-deficient cells, leading to the induction of apoptosis via mitotic catastrophe. Collectively, the study indicates that targeting PKC may be a potential option for developing new strategies to treat Nf1-deficiency-related diseases.
    Cell cycle (Georgetown, Tex.) 06/2014; 13(15). DOI:10.4161/cc.29297 · 5.01 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Neurofibromatosis type 1 (NF1) is a relatively common tumour predisposition syndrome related to germline aberrations of NF1, a tumour suppressor gene. The gene product neurofibromin is a negative regulator of the Ras cellular proliferation pathway, and also exerts tumour suppression via other mechanisms. Recent next-generation sequencing projects have revealed somatic NF1 aberrations in various sporadic tumours. NF1 plays a critical role in a wide range of tumours. NF1 alterations appear to be associated with resistance to therapy and adverse outcomes in several tumour types. Identification of a patient's germline or somatic NF1 aberrations can be challenging, as NF1 is one of the largest human genes, with a myriad of possible mutations. Epigenetic factors may also also contribute to inadequate levels of neurofibromin in cancer cells. Clinical trials of NF1-based therapeutic approaches are currently limited. Preclinical studies on neurofibromin-deficient malignancies have mainly been on malignant peripheral nerve sheath tumour cell lines or xenografts derived from NF1 patients. However, the emerging recognition of the role of NF1 in sporadic cancers may lead to the development of NF1-based treatments for other tumour types. Improved understanding of the implications of NF1 aberrations is critical for the development of novel therapeutic strategies.
    Oncotarget 07/2014; 5(15). · 6.63 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: NF1 encodes a RAS GTPase-Activating Protein. Accordingly, aberrant RAS activation underlies the pathogenesis of NF1-mutant cancers. Nevertheless, it is unclear which RAS pathway components represent optimal therapeutic targets. Here we identify mTORC1 as the key PI3K effector in NF1-mutant nervous system malignancies and conversely show that mTORC2 and AKT are dispensable. However, we find that tumor regression requires sustained inhibition of both mTORC1 and MEK. Transcriptional profiling studies were therefore used to establish a signature of effective mTORC1/MEK inhibition in vivo. We unexpectedly found that the glucose transporter, GLUT1, was potently suppressed but only when both pathways were inhibited. Moreover, unlike VHL and LKB1 mutant cancers, reduction of 18F-FDG uptake required the suppression of both mTORC1 and MEK. Together these studies identify optimal and sub-optimal therapeutic targets in NF1-mutant malignancies and define a non-invasive means of measuring combined mTORC1/MEK inhibition in vivo, which can be readily incorporated into clinical trials.
    Cancer Discovery 06/2014; 4(9). DOI:10.1158/2159-8290.CD-14-0159 · 15.93 Impact Factor

Full-text (2 Sources)

Available from
Nov 23, 2014