Genotypic variation in drought stress response and subsequent recovery of wheat (Triticum aestivum L.).

Acad. M. Popov Institute of Plant Physiology, Bulgarian Academy of Sciences, Academik Georgi Bonchev, Str., Block 21, 1113 Sofia, Bulgaria.
Journal of Plant Research (Impact Factor: 2.51). 01/2011; 124(1):147-54. DOI: 10.1007/s10265-010-0340-7
Source: PubMed

ABSTRACT Three wheat (Triticum aestivum L.) genotypes, Sadovo, Katya and Prelom, with different tolerance to drought were comparatively evaluated in terms of leaf respiratory responses to progressing dehydration and consecutive rewatering. Under drought stress, the respiration of all varieties gradually decreased, as the drought-tolerant Katya showed the most pronounced decline at earlier stages of dehydration. When water stress intensified, this genotype gave relatively stable respiration rates compared with the drought-sensitive varieties. Additionally, dehydrated Katya leaves displayed lower stomatal conductance and higher photosynthesis values, which resulted in greater water use efficiency during the dehydration period. Combination of drought stress and short-term changes in leaf temperature also induced genotype-specific response that differed from the response to drought only. Over the whole temperature range, the leaves of Katya exposed to dehydration for 14 days, showed higher respiration rates compared to the drought-sensitive varieties. The sensitive varieties maintained higher respiration rates under control conditions and mild dehydration, and very low rates under severe drought. In Katya, respiration and photosynthesis were fully restored from the stress within the first day of rewatering. The drought-sensitive genotypes displayed a considerably slower recovering capacity. The results are discussed in terms of possible physiological mechanisms underlying plant tolerance to drought.

  • Functional Plant Biology 01/2014; 41(5):468. DOI:10.1071/FP13237 · 2.57 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Climate models predict more frequent and more severe extreme events (e.g., heat waves, extended drought periods, flooding) in many regions for the next decades. The impact of adverse environmental conditions on crop plants is ecologically and economically relevant. This review is focused on drought and heat effects on physiological status and productivity of agronomically important plants. Stomatal opening represents an important regulatory mechanism during drought and heat stress since it influences simultaneously water loss via transpiration and CO 2 diffusion into the leaf apoplast which further is utilized in photosynthesis. Along with the reversible short-term control of stomatal opening, stomata and leaf epidermis may produce waxy deposits and irreversibly down-regulate the stomatal conductance and non-stomatal transpiration. As a consequence photosynthesis will be negatively affected. Rubisco activase—a key enzyme in keeping the Calvin cycle functional—is heat-sensitive and may become a limiting factor at elevated temperature. The accumulated reactive oxygen species (ROS) during stress represent an additional challenge under unfavorable conditions. Drought and heat cause accumulation of free amino acids which are partially converted into compatible solutes such as proline. This is accompanied by lower rates of both nitrate reduction and de novo amino acid biosynthesis. Protective proteins (e.g., dehydrins, chaperones, antioxidant enzymes or the key enzyme for proline biosynthesis) play an important role in leaves and may be present at higher levels under water deprivation or high temperatures. On the whole plant level, effects on long-distance translocation of solutes via xylem and phloem and on leaf senescence (e.g., anticipated, accelerated or delayed senescence) are important. The factors mentioned above are relevant for the overall performance of crops under drought and heat and must be considered for genotype selection and breeding programs.
    10/2014; 2. DOI:10.3389/fenvs.2014.00039
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Soybean genotypes show diverse physiological responses to drought, but specific physiological traits that can be used to evaluate drought tolerance have not been identified. In the present study we investigated physiological traits of soybean genotypes under progressive soil drying and rewetting, using a treatment mimicking field conditions. After a preliminary study with eight soybean genotypes, two drought-tolerant genotypes and one susceptible genotype were grown in the greenhouse and subjected to water restriction. Leaf expansion rate, gas exchange, water relation parameters, total chlorophyll (Chl), proline contents of leaves, and root xylem pH were monitored in a time course, and plant growth and root traits were measured at the end of the stress cycle. Drought-tolerant genotypes maintained higher leaf expansion rate, net photosynthetic rate (P n), Chl content, instantaneous water use efficiency (WUEi), % relative water content (RWC), water potential (ψ w), and turgor potential (ψ p) during progressive soil drying and subsequent rewetting than the susceptible genotypes. By contrast, stomatal conductance (g s) and transpiration rate (T r) of tolerant genotypes declined faster owing to dehydration and recovered more sharply after rehydration than the same parameters in susceptible ones. Water stress caused a significant increase in leaf proline level and root xylem sap pH of both genotypes but tolerant genotypes recovered to pre-stress levels more quickly after rehydration. Tolerant genotypes also produced longer roots with higher dry mass than susceptible genotypes. We conclude that rapid perception and adjustment in response to soil drying and rewetting as well as the maintenance of relatively high P n , %RWC, and root growth constitute the mechanisms by which drought-tolerant soybean genotypes cope with water stress.