Berries and ellagic acid prevent estrogen-induced mammary tumorigenesis by modulating enzymes of estrogen metabolism.

James Graham Brown Cancer Center, University of Louisville, KY 40202, USA.
Cancer Prevention Research (Impact Factor: 4.89). 06/2010; 3(6):727-37. DOI: 10.1158/1940-6207.CAPR-09-0260
Source: PubMed

ABSTRACT To determine whether dietary berries and ellagic acid prevent 17beta-estradiol (E(2))-induced mammary tumors by altering estrogen metabolism, we randomized August-Copenhagen Irish rats (n = 6 per group) into five groups: sham implant + control diet, E(2) implant + control diet (E(2)-CD), E(2) + 2.5% black raspberry (E(2)-BRB), E(2) + 2.5% blueberry (E(2)-BB), and E(2) + 400 ppm ellagic acid (E(2)-EA). Animals were euthanized at early (6 wk), intermediate (18 wk), and late (24 wk) phases of E(2) carcinogenesis, and the mammary tissue was analyzed for gene expression changes using quantitative real-time PCR. At 6 weeks, E(2) treatment caused a 48-fold increase in cytochrome P450 1A1 (CYP1A1; P < 0.0001), which was attenuated by both BRB and BB diets to 12- and 21-fold, respectively (P < 0.001). E(2) did not alter CYP1B1 levels, but both berry and EA diets significantly suppressed it by 11- and 3.5-fold, respectively, from baseline (P < 0.05). There was a 5-fold increase in 17beta-hydroxysteroid dehydrogenase 7 (17betaHSD7), and this was moderately abrogated to approximately 2-fold by all supplementation (P < 0.05). At 18 weeks, CYP1A1 was elevated by 15-fold in E(2)-CD and only E(2)-BB reduced this increase to 7-fold (P < 0.05). Catechol-O-methyltransferase expression was elevated 2-fold by E(2) treatment (P < 0.05), and all supplementation reversed this. At 24 weeks, CYP1A1 expression was less pronounced but still high (8-fold) in E(2)-treated rats. This increase was reduced to 3.2- and 4.6-fold by E(2)-BRB and E(2)-EA, respectively (P < 0.05), but not by E(2)-BB. Supplementation did not alter the effect of E(2) on steroid receptors. The diets also significantly suppressed mammary tumor incidence (10-30%), volume (41-67%), and multiplicity (38-51%; P < 0.05). Berries may prevent mammary tumors by suppressing the levels of E(2)-metabolizing enzymes during the early phase of E(2) carcinogenesis.

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Estrogen exposure plays a role in breast cancer (BC) development. A novel estrogen biomarker, the estrogen DNA adduct (EDA) ratio, was shown to be elevated in women at high-risk of BC and among BC cases. Modifiable factors may impact the EDA ratio, with studies demonstrating that resveratrol reduces EDA ratio in vitro. We sought to examine the hypothesis that dietary intake of fruits and vegetables is inversely associated with EDA ratio. This analysis was conducted in 53 pre-menopausal, healthy women aged 40-45 years from a cross-sectional study in which participants provided first-void urine samples and 3-day food records. Urine samples were analyzed using ultraperformance liquid chromatography/tandem mass spectrometry. The EDA ratio was calculated as the estrogen-DNA adducts divided by estrogen metabolites and conjugates. A trend test was used to assess associations between tertiles of dietary intake using linear regression. After adjustment for age, total energy, percent adiposity, serum estradiol and estrone-sulfate, we observed inverse associations of EDA ratio with carbohydrate consumption (P=0.01) and vegetable intake (P =0.01). EDA ratio was inversely associated with 5 botanical groups (Chenopodiaceae: P=0.02; Umbelliferae: P=0.03; Compositae: P=0.01; Ericaceae: P=0.01; Musaceae: P=0.03) but not fruit intake overall. Although these data require replication before conclusions are drawn, this report suggests an inverse association between vegetable and carbohydrate consumption and EDA ratio. While more information is still needed, these findings suggest a link between dietary intake and a biomarker that is both associated with high-risk BC status and associated with modifiable factors.
    Open Journal of Preventive Medicine 06/2014; 4(6):429-437.
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Cancer is a leading cause of death worldwide. Cancer treatments by chemotherapeutic agents, surgery, and radiation have not been highly effective in reducing the incidence of cancers and increasing the survival rate of cancer patients. In recent years, plant-derived compounds have attracted considerable attention as alternative cancer remedies for enhancing cancer prevention and treatment because of their low toxicities, low costs, and low side effects. Ellagic acid (EA) is a natural phenolic constituent. Recent in vitro and in vivo experiments have revealed that EA elicits anticarcinogenic effects by inhibiting tumor cell proliferation, inducing apoptosis, breaking DNA binding to carcinogens, blocking virus infection, and disturbing inflammation, angiogenesis, and drug-resistance processes required for tumor growth and metastasis. This review enumerates the anticarcinogenic actions and mechanisms of EA. It also discusses future directions on the applications of EA.
    Cancer biology & medicine. 06/2014; 11(2):92-100.
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Objective To evaluate the preclinical efficacy of topical administration of freeze-dried black raspberries (BRBs) to inhibit the progression of premalignant oral lesions and modulate biomarkers of cancer development in high at-risk mucosa (HARM). Study Design Hamster cheek pouches (HCPs) were treated with carcinogen for six weeks to initiate a HARM microenvironment. Subsequently, right HCPs were topically administered a BRB suspension in short-term or long-term studies. After 12 weeks, SCC multiplicity, SCC incidence, and cell proliferation rates were evaluated. mRNA expression was measured in short-term treated pouches for selected oral cancer biomarkers. Results SCC multiplicity (-41.3%), tumor incidence (-37.1%), and proliferation rate (-6.9%) were reduced in HCPs receiving BRBs. Topical BRBs correlated with an increase in Rb1 expression in developing oral lesions. Conclusion Topical BRBs inhibit SCC development when targeted to HARM tissues. These results support the translational role of BRBs to prevent oral cancer development in humans.
    Oral Surgery, Oral Medicine, Oral Pathology, Oral Radiology, and Endodontology 12/2014; · 1.50 Impact Factor

Full-text (2 Sources)

Available from
Jun 11, 2014