Article

Fibroblast Growth Factor Receptor Signaling Dramatically Accelerates Tumorigenesis and Enhances Oncoprotein Translation in the Mouse Mammary Tumor Virus-Wnt-1 Mouse Model of Breast Cancer

Program in Cell and Molecular Biology, Baylor College of Medicine, Houston, Texas 77030, USA.
Cancer Research (Impact Factor: 9.28). 06/2010; 70(12):4868-79. DOI: 10.1158/0008-5472.CAN-09-4404
Source: PubMed

ABSTRACT Fibroblast growth factor (FGF) cooperates with the Wnt/beta-catenin pathway to promote mammary tumorigenesis. To investigate the mechanisms involved in FGF/Wnt cooperation, we genetically engineered a model of inducible FGF receptor (iFGFR) signaling in the context of the well-established mouse mammary tumor virus-Wnt-1 transgenic mouse. In the bigenic mice, iFGFR1 activation dramatically enhanced mammary tumorigenesis. Expression microarray analysis did not show transcriptional enhancement of Wnt/beta-catenin target genes but instead showed a translational gene signature that also correlated with elevated FGFR1 and FGFR2 in human breast cancer data sets. Additionally, iFGFR1 activation enhanced recruitment of RNA to polysomes, resulting in a marked increase in protein expression of several different Wnt/beta-catenin target genes. FGF pathway activation stimulated extracellular signal-regulated kinase and the phosphorylation of key translation regulators both in vivo in the mouse model and in vitro in a human breast cancer cell line. Our results suggest that cooperation of the FGF and Wnt pathways in mammary tumorigenesis is based on the activation of protein translational pathways that result in, but are not limited to, increased expression of Wnt/beta-catenin target genes (at the level of protein translation). Further, they reveal protein translation initiation factors as potential therapeutic targets for human breast cancers with alterations in FGF signaling.

0 Bookmarks
 · 
101 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: Triple-negative breast cancers (TNBC) are an aggressive disease subtype which unlike other subtypes lack an effective targeted therapy. Inhibitors of the insullin-like growth factor receptor (IGF-1R) have been considered for use in treating TNBC. Here we provide genetic evidence that IGF-1R inhibition promotes development of Wnt1-mediated murine mammary tumors that offer a model of TNBC. We found that in a double transgenic mouse model carrying activated Wnt-1 and mutant IGF-1R, a reduction in IGF-1R signaling reduced tumor latency and promoted more aggressive phenotypes. These tumors displayed a squamal cell phenotype with increased expression of keratins 5/6 and β-catenin. Notably, cell lineage analyses revealed an increase in basal (CD29hi/CD24+) and luminal (CD24+/CD61+/CD29lo) progenitor cell populations, along with increased Nanog expression and decreased Elf5 expression. In these doubly transgenic mice, lung metastases developed with characteristics of the primary tumors, unlike MMTV-Wnt1 mice. Mechanistic investigations showed that pharmacological inhibition of the IGF-1R in vitro was sufficient to increase the tumorsphere-forming efficiency of MMTV-Wnt1 tumor cells. Tumors from doubly transgenic mice also exhibited an increase in the expression ratio of the IGF-II-sensitive, A isoform of the insulin receptor vs the IR-B isoform, which in vitro resulted in enhanced expression of β-catenin. Overall, our results revealed that in Wnt-driven tumors an attenuation of IGF-1R signaling accelerates tumorigenesis and promotes more aggressive phenotypes, with potential implications for understanding TNBC pathobiology and treatment.
    Cancer Research 08/2014; 74(19). DOI:10.1158/0008-5472.CAN-14-0970 · 9.28 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Genomic variability limits the efficacy of breast cancer therapy. To simplify the study of the molecular complexity of breast cancer, researchers have used mouse mammary tumor models. However, the degree to which mouse models model human breast cancer and are reflective of the human heterogeneity has yet to be demonstrated with gene expression studies on a large scale.
    Breast cancer research: BCR 06/2014; 16(3):R59. DOI:10.1186/bcr3672 · 5.88 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Increases in fibroblastic growth factor 23 (FGF23 or Fgf23) production by osteocytes result in hypophosphatemia and rickets in the Hyp mouse homologue of X-linked hypophosphatemia (XLH). Fibroblastic growth factor (FGF) signaling has been implicated in the pathogenesis of Hyp. Here, we conditionally deleted FGF receptor 1 (FGFR1 or Fgfr1) in osteocytes of Hyp mice to investigate the role of autocrine/paracrine FGFR signaling in regulating FGF23 production by osteocytes. Crossing dentin matrix protein 1 (Dmp1)-Cre;Fgfr1null/+ mice with female Hyp;Fgfr1flox/flox mice created Hyp and Fgfr1 (Fgfr1Dmp1-cKO)-null mice (Hyp;Fgfr1Dmp1-cKO) with a 70% decrease in bone Fgfr1 transcripts. Fgfr1Dmp1-cKO-null mice exhibited a 50% reduction in FGF23 expression in bone and 3-fold reduction in serum FGF23 concentrations, as well as reductions in sclerostin (Sost), phosphate regulating endopeptidase on X chromosome (PHEX or Phex), matrix extracellular phosphoglycoprotein (Mepe), and Dmp1 transcripts, but had no demonstrable alterations in phosphate or vitamin D homeostasis or skeletal morphology. Hyp mice had hypophosphatemia, reductions in 1,25(OH)2D levels, rickets/osteomalacia and elevated FGF2 expression in bone. Compared to Hyp mice, compound Hyp;Fgfr1Dmp1-cKO-null mice had significant improvement in rickets and osteomalacia in association with a decrease in serum FGF23 (3607 to 1099 pg/ml), an increase in serum phosphate (6.0 mg/dl to 9.3 mg/dl) and 1,25(OH)2D (121±23 to 192±34 pg/ml) levels, but only a 30% reduction in bone FGF23 mRNA expression. FGF23 promoter activity in osteoblasts was stimulated by FGFR1 activation and inhibited by overexpression of a dominant negative FGFR1(TK-), PLCγ and MAPK inhibitors. FGF2 also stimulated the translation of an FGF23 cDNA transfected into osteoblasts via a FGFR1 and PI3K/Akt-dependent mechanism. Thus, activation of autocrine/paracrine FGF pathways is involved in the pathogenesis of Hyp through FGFR1-dependent regulation of FGF23 by both transcriptional and post-transcriptional mechanisms. This may serve to link local bone metabolism with systemic phosphate and vitamin D homeostasis.
    PLoS ONE 08/2014; 9(8):e104154. DOI:10.1371/journal.pone.0104154 · 3.53 Impact Factor
    This article is viewable in ResearchGate's enriched format

Full-text

Download
144 Downloads
Available from
Jun 10, 2014