Article

Antagonistic Anti-urokinase Plasminogen Activator Receptor (uPAR) Antibodies Significantly Inhibit uPAR-mediated Cellular Signaling and Migration

Department of Pharmaceutical Chemistry, University of California, San Francisco, California 94158-2517, USA.
Journal of Biological Chemistry (Impact Factor: 4.57). 08/2010; 285(35):26878-88. DOI: 10.1074/jbc.M109.077677
Source: PubMed

ABSTRACT Interactions between urokinase plasminogen activator receptor (uPAR) and its various ligands regulate tumor growth, invasion, and metastasis. Antibodies that bind specific uPAR epitopes may disrupt these interactions, thereby inhibiting these processes. Using a highly diverse and naïve human fragment of the antigen binding (Fab) phage display library, we identified 12 unique human Fabs that bind uPAR. Two of these antibodies compete against urokinase plasminogen activator (uPA) for uPAR binding, whereas a third competes with beta1 integrins for uPAR binding. These competitive antibodies inhibit uPAR-dependent cell signaling and invasion in the non-small cell lung cancer cell line, H1299. Additionally, the integrin-blocking antibody abrogates uPAR/beta1 integrin-mediated H1299 cell adhesion to fibronectin and vitronectin. This antibody and one of the uPAR/uPA antagonist antibodies shows a significant combined effect in inhibiting cell invasion through Matrigel/Collagen I or Collagen I matrices. Our results indicate that these antagonistic antibodies have potential for the detection and treatment of uPAR-expressing tumors.

Download full-text

Full-text

Available from: Charles S Craik, Aug 04, 2015
0 Followers
 · 
250 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Since decades the urokinase plasminogen activator (uPA) system has been associated with the invasion of malignant cells. The receptor of urokinase (uPAR) is one of the key players in this proteolytic cascade, because it focuses uPA's proteolytic activity to the cell surface and in addition functions as a signaling receptor. uPAR is highly expressed in virtually all human cancers, suggesting possible clinical applications as diagnostic marker, predictive tool of survival or clinical response, and as a target for therapy and imaging. This review summarizes the possibilities of uPAR in clinical applications for cancer patients.
    Current pharmaceutical design 06/2011; 17(19):1890-910. DOI:10.2174/138161211796718233 · 3.29 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Crystallographic studies of membrane proteins have been steadily increasing despite their unique physical properties that hinder crystal formation. Co-crystallization with antibody fragments has emerged as a promising solution to obtain diffraction quality crystals. Antibody binding to the target membrane protein can yield a homogenous population of the protein. Interantibody interactions can also provide additional crystal contacts, which are minimized in membrane proteins due to micelle formation around the transmembrane segments. Rapid identification of antibody fragments that can recognize native protein structure makes phage display a valuable method for crystallographic studies of membrane proteins. Methods that speed the reliable characterization of phage display selected antibody fragments are needed to make the technology more generally applicable. In this report, a phage display biopanning procedure is described to identify Fragments antigen binding (Fabs) for membrane proteins. It is also demonstrated that Fabs can be rapidly grouped based on relative affinities using enzyme linked immunosorbent assay (ELISA) and unpurified Fabs. This procedure greatly speeds the prioritization of candidate binders to membrane proteins and will aid in subsequent structure determinations.
    Methods 09/2011; 55(4):303-9. DOI:10.1016/j.ymeth.2011.09.012 · 3.22 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The type II transmembrane serine protease family consists of 18 closely related serine proteases that are implicated in multiple functions. To identify selective, inhibitory antibodies against one particular type II transmembrane serine protease, matriptase [MT-SP1 (membrane-type serine protease 1)], a phage display library was created with a natural repertoire of Fabs [fragment antigen binding (Fab)] from human naïve B cells. Fab A11 was identified with a 720 pM inhibition constant and high specificity for matriptase over other trypsin-fold serine proteases. A Trichoderma reesei system expressed A11 with a yield of ∼200 mg/L. The crystal structure of A11 in complex with matriptase has been determined and compared to the crystal structure of another antibody inhibitor (S4) in complex with matriptase. Previously discovered from a synthetic single-chain variable fragment library, S4 is also a highly selective and potent matriptase inhibitor. The crystal structures of the A11/matriptase and S4/matriptase complexes were solved to 2.1 Å and 1.5 Å, respectively. Although these antibodies, discovered from separate libraries, interact differently with the protease surface loops for their specificity, the structures reveal a similar novel mechanism of protease inhibition. Through the insertion of the H3 variable loop in a reverse orientation at the substrate-binding pocket, these antibodies bury a large surface area for potent inhibition and avoid proteolytic inactivation. This discovery highlights the critical role that the antibody scaffold plays in positioning loops to bind and inhibit protease function in a highly selective manner. Additionally, Fab A11 is a fully human antibody that specifically inhibits matriptase over other closely related proteases, suggesting that this approach could be useful for clinical applications.
    Journal of Molecular Biology 11/2011; 415(4):699-715. DOI:10.1016/j.jmb.2011.11.036 · 4.33 Impact Factor
Show more