Article

Expansion of ribosomally produced natural products: a nitrile hydratase- and Nif11-related precursor family

The J Craig Venter Institute, 9704 Medical Center Drive, Rockville, MD 20850, USA.
BMC Biology (Impact Factor: 7.43). 05/2010; 8:70. DOI: 10.1186/1741-7007-8-70
Source: PubMed

ABSTRACT A new family of natural products has been described in which cysteine, serine and threonine from ribosomally-produced peptides are converted to thiazoles, oxazoles and methyloxazoles, respectively. These metabolites and their biosynthetic gene clusters are now referred to as thiazole/oxazole-modified microcins (TOMM). As exemplified by microcin B17 and streptolysin S, TOMM precursors contain an N-terminal leader sequence and C-terminal core peptide. The leader sequence contains binding sites for the posttranslational modifying enzymes which subsequently act upon the core peptide. TOMM peptides are small and highly variable, frequently missed by gene-finders and occasionally situated far from the thiazole/oxazole forming genes. Thus, locating a substrate for a particular TOMM pathway can be a challenging endeavor.
Examination of candidate TOMM precursors has revealed a subclass with an uncharacteristically long leader sequence closely related to the enzyme nitrile hydratase. Members of this nitrile hydratase leader peptide (NHLP) family lack the metal-binding residues required for catalysis. Instead, NHLP sequences display the classic Gly-Gly cleavage motif and have C-terminal regions rich in heterocyclizable residues. The NHLP family exhibits a correlated species distribution and local clustering with an ABC transport system. This study also provides evidence that a separate family, annotated as Nif11 nitrogen-fixing proteins, can serve as natural product precursors (N11P), but not always of the TOMM variety. Indeed, a number of cyanobacterial genomes show extensive N11P paralogous expansion, such as Nostoc, Prochlorococcus and Cyanothece, which replace the TOMM cluster with lanthionine biosynthetic machinery.
This study has united numerous TOMM gene clusters with their cognate substrates. These results suggest that two large protein families, the nitrile hydratases and Nif11, have been retailored for secondary metabolism. Precursors for TOMMs and lanthionine-containing peptides derived from larger proteins to which other functions are attributed, may be widespread. The functions of these natural products have yet to be elucidated, but it is probable that some will display valuable industrial or medical activities.

Download full-text

Full-text

Available from: Douglas A Mitchell, Jun 24, 2015
0 Followers
 · 
113 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The actinomycetes are well-known bioactive natural product producers, comprising the Streptomycetes, the richest drug-prolific family in all kingdoms, producing therapeutic compounds for the areas of infection, cancer, circulation, and immunity. Completion and annotation of many actinomycete genomes has highlighted further how proficient these bacteria are in specialized metabolism, which have been largely underexploited in traditional screening programs. The genome sequence of the model strain Streptomyces coelicolor A3(2), and subsequent development of genomics-driven approaches to understand its large specialized metabolome, has been key in unlocking the high potential of specialized metabolites for natural product genomics-based drug discovery. This review discusses systematically the biochemistry and genetics of each of the specialized metabolites of S. coelicolor and describes metabolite transport processes for excretion and complex regulatory patterns controlling biosynthesis.
    Advances in applied microbiology 01/2014; 89:217-66. DOI:10.1016/B978-0-12-800259-9.00006-8 · 2.24 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Bacillus amyloliquefaciens FZB42 has been shown to stimulate plant growth and to suppress the growth of plant pathogenic organisms including nematodes. However, the mechanism underlying its effect against nematodes remains unknown. In this study, we screened a random mutant library of B. amyloliquefaciens FZB42 generated by the mariner transposon TnYLB-1 and identified a mutant strain F5 with attenuated nematicidal activity. Reversible polymerase chain reaction revealed that three candidate genes RAMB_007470, yhdY, and prkA that were disrupted by the transposon in strain F5 potentially contributed to its decreased nematicidal activity. Bioassay of mutants impaired in the three candidate genes demonstrated that directed deletion of gene RBAM_007470 resulted in loss of nematicidal activity comparable with that of the F5 triple mutant. RBAM_007470 has been reported as being involved in biosynthesis of plantazolicin, a thiazole/oxazole-modified microcin with hitherto unknown function. Electrospray ionization time-of-flight mass spectrometry (ESI-TOF-MS) analyses of surface extracts revealed that plantazolicin bearing a molecular weight of 1,354 Da was present in wild-type B. amyloliquefaciens FZB42, but absent in the ΔRABM_007470 mutant. Furthermore, bioassay of the organic extract containing plantazolicin also showed a moderate nematicidal activity. We conclude that a novel gene RBAM_007470 and its related metabolite are involved in the antagonistic effect exerted by B. amyloliquefaciens FZB42 against nematodes.
    Applied Microbiology and Biotechnology 10/2013; DOI:10.1007/s00253-013-5247-5 · 3.81 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Aliivibrio wodanis and Moritella viscosa have often been isolated concurrently from fish with winter-ulcer disease. Little is known about the interaction between the two bacterial species and how the presence of one bacterial species affects the behaviour of the other. The impact on bacterial growth in co-culture was investigated in vitro, and the presence of A. wodanis has an inhibitorial effect on M. viscosa. Further, we have sequenced the complete genomes of these two marine Gram-negative species, and have performed transcriptome analysis of the bacterial gene expression levels from in vivo samples. Using bacterial implants in the fish abdomen, we demonstrate that the presence of A. wodanis is altering the gene expression levels of M. viscosa compared to when the bacteria are implanted separately. From expression profiling of the transcriptomes, it is evident that the presence of A. wodanis is altering the global gene expression of M. viscosa. Co-cultivation studies showed that A. wodanis is impeding the growth of M. viscosa, and that the inhibitorial effect is not contact-dependent.
    BMC Genomics 06/2015; 16(1):447. DOI:10.1186/s12864-015-1669-z · 4.04 Impact Factor