Trace determination of sulfonylurea herbicides in water and grape samples by capillary zone electrophoresis using large volume sample stacking.

Department of Analytical Chemistry, University of Granada, Campus Fuentenueva, s/n, 18071 Granada, Spain.
Analytical and Bioanalytical Chemistry (Impact Factor: 3.66). 05/2010; 397(6):2593-601. DOI: 10.1007/s00216-010-3812-7
Source: PubMed

ABSTRACT A sensitive and reliable method using capillary zone electrophoresis with UV-diode array detection has been developed and validated for trace determination of residues of sulfonylurea herbicides in environmental water samples and grapes from different origins. The analytes included are triasulfuron, rimsulfuron, flazasulfuron, metsulfuron-methyl, and chlorsulfuron. Optimum separation has been achieved on a 48.5-cm x 50-microm (effective length 40 cm) bubble cell capillary using 90 mM ammonium acetate buffer, pH 4.8, by applying a voltage of 20 kV at 25 degrees C and using p-aminobenzoic acid as the internal standard. In order to increase sensitivity, large volume sample stacking with polarity switching has been applied as on-line preconcentration methodology. For water samples, a solid-phase extraction (SPE) procedure based on the use of Oasis HLB cartridges was applied for off-line preconcentration and cleanup. For grape samples, the SPE procedure was achieved with C(18) sorbent, after extraction of the compounds with MeOH:H(2)O (1:1) by sonication. The limits of detection for the studied compounds were between 0.04 and 0.12 microg/L for water samples and 0.97 and 8.30 microg/kg in the case of grape samples, lower in all cases than the maximum residue limits permitted by the EU for this kind of food. The developed methodology has demonstrated its suitability for the monitoring of these residues in environmental water and grape samples with high sensitivity, precision, and satisfactory recoveries.

  • [Show abstract] [Hide abstract]
    ABSTRACT: In this paper, a new ionic-liquid-functionalized magnetic material was prepared based on the immobilization of an ionic liquid on silica magnetic particles that could be successfully used as an adsorbent for the magnetic SPE of five sulfonylurea herbicides (bensulfuron-methyl, prosulfuron, pyrazosulfuron-ethyl, chlorimuron-ethyl and triflusulfuron-methyl) from environmental water samples. The main parameters affecting the extraction efficiency such as desorption conditions, sample pH, extraction time and so on, were optimized using the Taguchi method. Good linearities were obtained with correlation coefficients ranging from 0.9992 to 0.9999 in the concentration range of 0.1-50 μg L(-1) and the LODs were 0.053-0.091 μg L(-1) . Under the optimum conditions, the enrichment factors of the method were 1155-1380 and the recoveries ranged from 77.8 to 104.4%. The proposed method was reliable and could be applied to the residue analysis of sulfonylurea herbicides in environmental water samples (tap, reservoir and river). This article is protected by copyright. All rights reserved.
    Journal of Separation Science 07/2013; · 2.59 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: This review highlights recent developments and applications of on-line sample preconcentration techniques in capillary electrophoresis (CE) from 2010 to April 2013. Various preconcentration techniques based on the analyte velocity change in two or three discontinuous solutions system including field-amplified stacking, transient isotachophoresis, pH-mediated stacking, sweeping, and their modified and combined techniques have been employed to enrich and separate biological, environmental, food, toxicological, forensic and nanoparticle samples in CE. More than 170 published research articles collected from Scopus databases from the year 2010 described the on-line sample preconcentration techniques. This review provides comprehensive tables listing the applications of the on-line sample preconcentration techniques with categorizing by the fundamental preconcentration mechanism and application area.
    Journal of Chromatography A 10/2013; · 4.61 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Voltammetric behavior of triasulfuron (TS), sulfonylurea herbicide, was investigated using mercury meniscus modified silver solid amalgam electrode (m-AgSAE) and hanging mercury drop electrode (HMDE). It was found that TS provided one well-developed reduction peak and the highest current response was recorded in Britton–Robinson buffer of pH 3 (m-AgSAE) and 2.5 (HMDE), respectively. Differential-pulse voltammetry (DPV) with optimized working parameters was applied for analysis of model solutions containing TS with good sensitivity (LD(m-AgSAE) = 6.4 × 10−8 mol L−1 and LD(HMDE) = 2.7 × 10−9 mol L−1, respectively). Proposed method was successfully applied in analysis of herbicide preparation and river water.
    Electrochimica Acta 12/2013; 113:1. · 3.78 Impact Factor


Available from
May 30, 2014