Article

Trichome specific expression of the tobacco (Nicotiana sylvestris) cembratrien-ol synthase genes is controlled by both activating and repressing cis-regions.

Laboratoire d'Ecologie Alpine, Université Joseph Fourier and CNRS-Unité Mixte de Recherche 5553, 2233, rue de piscine, BP 53, 38041 Grenoble Cedex 9, France.
Plant Molecular Biology (Impact Factor: 4.07). 08/2010; 73(6):673-85. DOI: 10.1007/s11103-010-9648-x
Source: PubMed

ABSTRACT Tobacco (Nicotiana sylvestris) glandular trichomes make an attractive target for isoprenoid metabolic engineering because they produce large amounts of one type of diterpenoids, alpha- and beta-cembratrien-diols. This article describes the establishment of tools for metabolic engineering of tobacco trichomes, namely a transgenic line with strongly reduced levels of diterpenoids in the exudate and the characterization of a trichome specific promoter. The diterpene-free tobacco line was generated by silencing the major tobacco diterpene synthases, which were found to be encoded by a family of four highly similar genes (NsCBTS-2a, NsCBTS-2b, NsCBTS-3 and NsCBTS-4), one of which is a pseudogene. The promoter regions of all four CBTS genes were sequenced and found to share over 95% identity between them. Transgenic plants expressing uidA under the control of the NsCBTS-2a promoter displayed a specific pattern of GUS expression restricted exclusively to the glandular cells of the tall secretory trichomes. A series of sequential and internal deletions of the NsCBTS-2a promoter led to the identification of two cis-acting regions. The first, located between positions -589 to -479 from the transcription initiation site, conferred a broad transcriptional activation, not only in the glandular cells, but also in cells of the trichome stalk, as well as in the leaf epidermis and the root. The second region, located between positions -279 to -119, had broad repressor activity except in trichome glandular cells and is mainly responsible for the specific expression pattern of the NsCBTS-2a gene. These results establish the basis for the identification of trans-regulators required for the expression of the CBTS genes restricted to the secretory cells of the glandular trichomes.

1 Follower
 · 
217 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Isoprenoids constitute one of the largest families of natural compounds. They play essential functions in plant growth and development and furnish compounds of high interest for humans. Here, we present the current knowledge on isoprenoid metabolism before describing the strategies that have been used for isoprenoid metabolic engineering. We discuss the advantages and drawbacks of using microorganisms and plants as cell platform for the production of isoprenoids of interest.
    Natural Products, 05/2013: chapter Metabolic Engineering of Isoprenoid Biosynthesis: pages 2813-2851;
  • [Show abstract] [Hide abstract]
    ABSTRACT: Leaf glandular trichomes (epidermal hairs) actively synthesize secondary metabolites, many of which are the frontline of plant defense. In Nicotiana tabacum tall and short glandular trichomes have been identified. While the former have been extensively studied and match the classic picture of trichome function, the short trichomes have remained relatively uncharacterized. We have set up a procedure based on centrifugation on Percoll density gradients to obtain separate tall and short trichome fractions purified to more than 85%. We then investigated the proteome of both trichome types combining 2D-LC fractionation of tryptic peptides and quantification of a set of 461 protein groups using isobaric tags for relative and absolute quantitation. Almost the entire pathway leading to the synthesis of diterpenes was identified in the tall trichomes. Indications for their key roles in the synthesis of cuticular compounds were also found. Concerning the short glandular trichomes, ribosomal proteins and enzymes such phosphoenolpyruvate carboxykinase and polyphenol oxidase were more abundant than in the tall glandular trichomes. These results are discussed in the frame of several hypotheses regarding the respective roles of short and long glandular trichomes.
    Journal of Proteome Research 05/2014; 13(7). DOI:10.1021/pr5002548 · 5.00 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Volatile esters are major factors affecting the aroma of apple fruits, and alcohol acyltransferases (AATs) are key enzymes involved in the last steps of ester biosynthesis. The expression of apple AAT (MdAAT2) is known to be induced by salicylic acid (SA) or ethylene in apple fruits, although the mechanism of its transcriptional regulation remains elusive. In this study, we reveal that two apple transcription factors (TFs), MdMYB1 and MdMYB6, are involved in MdAAT2 promoter response to SA and ethylene in transgenic tobacco. According to electrophoretic mobility shift assays, MdMYB1 or MdMYB6 can directly bind in vitro to MYB binding sites in the MdAAT2 promoter. In vivo, overexpression of the two MYB TFs can greatly enhance MdAAT2 promoter activity, as demonstrated by dual luciferase reporter assays in transgenic tobacco. In contrast to the promoter of MdMYB1 or MdMYB6, the MdAAT2 promoter cannot be induced by SA or ethephon (ETH) in transgenic tobacco, even in stigmas in which the MdAAT2 promoter can be highly induced under normal conditions. However, the induced MYB TFs can dramatically enhance MdAAT2 promoter activity under SA or ETH treatment. We conclude that MdMYB1 and MdMYB6 function in MdAAT2 responses to SA and ethylene in transgenic tobacco, suggesting that a similar regulation mechanism may exist in apple.
    Plant Molecular Biology 06/2014; DOI:10.1007/s11103-014-0207-8 · 4.07 Impact Factor

Full-text

Download
11 Downloads
Available from
Nov 20, 2014