Article

Hippocampal volume change in schizophrenia.

Rudolf Magnus Institute of Neuroscience, Department of Psychiatry, A.01.126, University Medical Center Utrecht, PO Box 85060, 3584 CX Utrecht, The Netherlands.
The Journal of Clinical Psychiatry (Impact Factor: 5.81). 06/2010; 71(6):737-44. DOI: 10.4088/JCP.08m04574yel
Source: PubMed

ABSTRACT Patients with schizophrenia show reductions in hippocampal volume. However, the time course of these changes is still unresolved. The aim of this study is to examine the extent to which hippocampal volume change in patients with schizophrenia is confounded by effects of age and/or antipsychotic medication.
Between 1995 and 2003, two structural magnetic resonance imaging brain scans were acquired from 96 patients with DSM-IV-diagnosed schizophrenia and 113 healthy subjects within an interval of approximately 5 years. Hippocampal volume change was measured and related to age and cumulative medication intake during the scan interval.
Patients with schizophrenia and healthy controls demonstrated significantly different age-related trajectories of hippocampal volume change. Before the age of 26 years, patients with schizophrenia showed increased volume loss relative to controls. In contrast, after the age of 40 years, controls showed larger volume loss than patients with schizophrenia. Higher exposure to atypical antipsychotic medication was related to a smaller decrease in hippocampal volume over time.
Our findings suggest progressive hippocampal volume loss in the early course of the illness in patients with schizophrenia but not in the more chronic stages of the illness. The relationship between larger exposure to atypical antipsychotic medication and smaller hippocampal volume loss during the interval may suggest neuroprotective effects of these agents on hippocampal volume.

0 Bookmarks
 · 
135 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: Numerous studies have reported that the hippocampus in schizophrenia patients is reduced in volume compared to the normal population. Antipsychotic medications have had mixed benefits in maintaining hippocampal volume or reversing volume loss. Recent evidence indicates that routine aerobic exercise represents a promising intervention for reversing hippocampal loss and cognitive deficits. In the present study, we measured the effects of chronic treatment with olanzapine and daily exercise on the hippocampal volumes of rats. Adult female rats were treated during the week with either olanzapine (10 mg/kg) or vehicle for nine consecutive weeks. Subgroups of animals were provided access to exercise running wheels for one or three hours per day during the same period, or were sedentary. Metabolic indices, including glucose tolerance, were measured on a weekly basis. At the conclusion of the study, brains were perfused and hippocampal sections were Nissl stained. Total hippocampal volume was measured using the Cavalieri estimator. Treatment with olanzapine caused a significant decrease in hippocampal volume in sedentary rats. However, exercise was able to reverse most of this volume loss. The hippocampal sub-regions of the dentate gyrus and CA1 were most strongly affected by olanzapine and exercise. Of interest, there was a strong and highly significant negative correlation between glucose intolerance and hippocampal volume, whereby greater glucose intolerance was associated with a smaller hippocampal volume. These findings indicate that exercise may have beneficial effects on the hippocampus when antipsychotic medication can contribute to changes in volume.
    Neuroscience 10/2013; · 3.12 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Schizophrenia is associated with structural and functional abnormalities of the hippocampus, which have been suggested to play an important role in the formation and emergence of schizophrenia syndrome. Patients with schizophrenia exhibit significant bilateral hippocampal volume reduction and progressive hippocampal volume decrease in first-episode patients with schizophrenia has been shown in many neuroimaging studies. Dysfunction of the neurotrophic system has been implicated in the pathophysiology of schizophrenia. The initiation of antipsychotic medication alters the levels of serum Brain Derived Neurotrophic Factor (BDNF) levels. However it is unclear whether treatment with antipsychotics is associated with alterations of hippocampal volume and BDNF levels. In the present longitudinal study we investigated the association between serum BDNF levels and hippocampal volumes in a sample of fourteen first-episode drug-naïve patients with schizophrenia (FEP). MRI scans, BDNF and clinical measurements were performed twice: at baseline before the initiation of antipsychotic treatment and 8 months later, while the patients were receiving monotherapy with second generation antipsychotics (SGAs). We found that left hippocampal volume was decreased (corrected left HV [t = 2.977, df = 13, p = .011] at follow-up; We also found that the higher the BDNF levels change the higher were the differences of corrected left hippocampus after 8 months of treatment with atypical antipsychotics (Pearson r = 0.597, p = 0.024). The association of BDNF with hippocampal volume alterations in schizophrenia merits further investigation and replication in larger longitudinal studies.
    PLoS ONE 01/2014; 9(2):e87997. · 3.53 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: This report outlines a neuroimaging pipeline that allows a robust, high-throughput, semi-automated, template-based protocol for segmenting the hippocampus in rhesus macaque (Macaca mulatta) monkeys ranging from 1 week to 260 weeks of age. The semiautomated component of this approach minimizes user effort while concurrently maximizing the benefit of human expertise by requiring as few as 10 landmarks to be placed on images of each hippocampus to guide registration. Any systematic errors in the normalization process are corrected using a machine-learning algorithm that has been trained by comparing manual and automated segmentations to identify systematic errors. These methods result in high spatial overlap and reliability when compared with the results of manual tracing protocols. They also dramatically reduce the time to acquire data, an important consideration in large-scale neuroradiological studies involving hundreds of MRI scans. Importantly, other than the initial generation of the unbiased template, this approach requires only modest neuroanatomical training. It has been validated for high-throughput studies of rhesus macaque hippocampal anatomy across a broad age range.
    PLoS ONE 01/2014; 9(2):e89456. · 3.53 Impact Factor

Full-text (2 Sources)

View
56 Downloads
Available from
May 22, 2014