EMA-Real-Time PCR as a Reliable Method for Detection of Viable Salmonella in Chicken and Eggs

Food Science Program, Div. of Food Systems and Bioengineering, 256 WCS Wing, Eckles Hall, Univ. of Missouri, Columbia, MO 65211, USA.
Journal of Food Science (Impact Factor: 1.78). 04/2010; 75(3):M134-9. DOI: 10.1111/j.1750-3841.2010.01525.x
Source: PubMed

ABSTRACT Culture-based Salmonella detection takes at least 4 d to complete. The use of TaqMan probes allows the real-time PCR technique to be a rapid and sensitive way to detect foodborne pathogens. However, unlike RNA-based PCR, DNA-based PCR techniques cannot differentiate between DNA from live and dead cells. Ethidium bromide monoazide (EMA) is a dye that can bind to DNA of dead cells and prevent its amplification by PCR. An EMA staining step prior to PCR allows for the effective inhibition of false positive results from DNA contamination by dead cells. The aim of this study was to design an accurate detection method that can detect only viable Salmonella cells from poultry products. The sensitivity of EMA staining coupled with real-time PCR was compared to that of an RNA-based reverse transcription (RT)-real-time PCR. To prevent false negative results, an internal amplification control was added to the same reaction mixture as the target Salmonella sequences. With an optimized EMA staining step, the detection range of a subsequent real-time PCR was determined to be 10(3) to 10(9) CFU/mL for pure cultures and 10(5) to 10(9) CFU/mL for food samples, which was a wider detection range than for RT-real-time PCR. After a 12-h enrichment step, EMA staining combined with real-time PCR could detect as low as 10 CFU/mL Salmonella from chicken rinses and egg broth. The use of EMA with a DNA-based real-time PCR can successfully prevent false positive results and represents a simple, yet accurate detection tool for enhancing the safety of food.

  • Source
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: In this study, a rapid and sensitive detection tool for screening Salmonella spp. by using a loop-mediated isothermal amplification (LAMP) assay targeting the genomic sequence of the invA gene was developed. The inclusivity and exclusivity were both at 100% in the analysis, and the limit of detection (LOD) in a pure S. Enteritidis culture suspended in saline was CFU/mL at 18.17 min ( = 0.9446). The LODs of the LAMP assay in buffered peptone water with Salmonella (BPW) and duck carcass swab sample enriched in BPW with Salmonella (BPWS) after 0 and 12 h incubation were CFU/mL and CFU/mL, respectively. Comparing the LODs in BPW with those in BPWS, the LAMP assay was less influenced by compounds of duck carcass swab sample than the PCR assay. Sensitivity and specificity of the LAMP assay in 50 duck carcass swab samples enriched in BPW for 6 h were 96% and 84%, respectively, indicating that the LAMP assay is a rapid, simple and sensitive assay, which can be utilized as a potential screening tool of Salmonella spp. in duck carcass sample.
    Hangug chugsan sigpum haghoeji = Korean journal for food science of animal resources 10/2013; 33(5). DOI:10.5851/kosfa.2013.33.5.655 · 0.25 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: In this study, the complete CoSYPS Path Food workflow including all steps, namely swab sample enrichment, SYBR®Green qPCR detection of Salmonella spp. and Listeria spp., isolation and confirmation of the detected strain, was validated on beef carcass swabs. To perform the validation, the results of the complete workflow were compared, according to the ISO 16140:2003, with the ISO reference methods for detection, isolation and confirmation of Listeria monocytogenes and Salmonella spp. The results showed that the relative level of detection and the limit of detection of the complete workflow and ISO reference methods are in a range from 2 to 16 CFU/swab for both bacteria. The relative specificity, sensitivity and accuracy identified during this validation were all 100% since the results obtained with the complete CoSYPS Path Food workflow and the ISO reference methods were identical (Cohen's kappa index = 1.00). In addition the complete CoSYPS Path Food workflow is able to provide detection results (negative or presumptive positive) in half the time needed as for the ISO reference methods. These results demonstrate that the performance of the complete CoSYPS Path Food workflow is not only comparable to the ISO reference methods but also provides a faster response for the verification of beef carcasses before commercial distribution.
    International Journal of Food Microbiology 01/2015; 192:103–110. DOI:10.1016/j.ijfoodmicro.2014.09.018 · 3.16 Impact Factor