Article

Merlin, a "magic" linker between extracellular cues and intracellular signaling pathways that regulate cell motility, proliferation, and survival.

Department of Oncological Sciences, Mount Sinai School of Medicine, New York, NY10029, USA.
Current Protein and Peptide Science (Impact Factor: 2.33). 09/2010; 11(6):471-84. DOI: 10.2174/138920310791824011
Source: PubMed

ABSTRACT Genetic alterations of neurofibromatosis type 2 (NF2) gene lead to the development of schwannomas, meningiomas, and ependymomas. Mutations of NF2 gene were also found in thyroid cancer, mesothelioma, and melanoma, suggesting that it functions as a tumor suppressor in a wide spectrum of cells. The product of NF2 gene is merlin (moesin-ezrin-radixin-like protein), a member of the Band 4.1 superfamily proteins. Merlin shares significant sequence homology with the ERM (Ezrin-Radixin-Moesin) family proteins and serves as a linker between transmembrane proteins and the actin-cytoskeleton. Merlin is a multifunctional protein and involved in integrating and regulating the extracellular cues and intracellular signaling pathways that control cell fate, shape, proliferation, survival, and motility. Recent studies showed that merlin regulates the cell-cell and cell-matrix adhesions and functions of the cell surface adhesion/extracellular matrix receptors including CD44 and that merlin and CD44 antagonize each other's function and work upstream of the mammalian Hippo signaling pathway. Furthermore, merlin plays important roles in stabilizing the contact inhibition of proliferation and in regulating activities of several receptor tyrosine kinases. Accumulating data also suggested an emerging role of merlin as a negative regulator of growth and progression of several non-NF2 associated cancer types. Together, these recent advances have improved our basic understanding about merlin function, its regulation, and the major signaling pathways regulated by merlin and provided the foundation for future translation of these findings into the clinic for patients bearing the cancers in which merlin function and/or its downstream signaling pathways are impaired or altered.

0 Bookmarks
 · 
55 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: One of the hallmarks of cancers is the silencing of tumour suppressor genes and pathways. The Hippo tumour suppressor pathway is inactivated in many types of cancers, leading to tumour progression and metastasis. However, the mechanisms of pathway inactivation in tumours remain unclear. Here we demonstrate that integrin-linked kinase (ILK) plays a critical role in the suppression of the Hippo pathway via phospho-inhibition of MYPT1-PP1, leading to inactivation of Merlin. Inhibition of ILK in breast, prostate and colon tumour cells results in the activation of the Hippo pathway components MST1 and LATS1 with concomitant inactivation of YAP/TAZ (Yes-associated protein/transcriptional co-activator with PDZ-binding motif) transcriptional co-activators and TEAD-mediated transcription. Genetic deletion of ILK suppresses ErbB2-driven YAP/TAZ activation in mammary tumours, and its pharmacological inhibition suppresses YAP activation and tumour growth in vivo. Our data demonstrate a role for ILK as a multiple receptor proximal regulator of Hippo tumour suppressor pathway and as a cancer therapeutic target.
    Nature Communications 12/2013; 4:2976. · 10.02 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Inactivating germline mutations in the tumor suppressor gene NF2 cause the hereditary syndrome neurofibromatosis 2, which is characterized by the development of neoplasms of the nervous system, most notably bilateral vestibular schwannoma. Somatic NF2 mutations have also been reported in a variety of cancers, but interestingly these mutations do not cause the same tumors that are common in hereditary neurofibromatosis 2, even though the same gene is involved and there is overlap in the site of mutations. This review highlights cancers in which somatic NF2 mutations have been found, the cell signaling pathways involving NF2/merlin, current clinical trials treating neurofibromatosis 2 patients, and preclinical findings that promise to lead to new targeted therapies for both cancers harboring NF2 mutations and neurofibromatosis 2 patients.
    Oncotarget 12/2013; · 6.64 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Malignant Mesothelioma (MM) is a very aggressive cancer with low survival rates and often diagnosed at an advanced stage. Several players have been implicated in the development of this cancer, such as asbestos, erionite and the simian virus 40 (SV40). Here, we have reviewed the involvement of erionite, SV40, as well as, the role of several genes (p16INK4a, p14ARF, NF2, LATS2, SAV, CTNNB1 and among others), the pathways (RAS, PI3K, Wnt, BCL and Hippo), and their respective roles in the development of MM.
    Biochimica et Biophysica Acta (BBA) - Reviews on Cancer 01/2014; · 9.03 Impact Factor

Full-text

View
0 Downloads
Available from