Survival analysis with error-prone time-varying covariates: a risk set calibration approach.

Department of Biostatistics, Harvard School of Public Health, Boston, Massachusetts 02115, USA.
Biometrics (Impact Factor: 1.52). 03/2011; 67(1):50-8. DOI: 10.1111/j.1541-0420.2010.01423.x
Source: PubMed

ABSTRACT Occupational, environmental, and nutritional epidemiologists are often interested in estimating the prospective effect of time-varying exposure variables such as cumulative exposure or cumulative updated average exposure, in relation to chronic disease endpoints such as cancer incidence and mortality. From exposure validation studies, it is apparent that many of the variables of interest are measured with moderate to substantial error. Although the ordinary regression calibration (ORC) approach is approximately valid and efficient for measurement error correction of relative risk estimates from the Cox model with time-independent point exposures when the disease is rare, it is not adaptable for use with time-varying exposures. By recalibrating the measurement error model within each risk set, a risk set regression calibration (RRC) method is proposed for this setting. An algorithm for a bias-corrected point estimate of the relative risk using an RRC approach is presented, followed by the derivation of an estimate of its variance, resulting in a sandwich estimator. Emphasis is on methods applicable to the main study/external validation study design, which arises in important applications. Simulation studies under several assumptions about the error model were carried out, which demonstrated the validity and efficiency of the method in finite samples. The method was applied to a study of diet and cancer from Harvard's Health Professionals Follow-up Study (HPFS).

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Methodological development of joint models of longitudinal and survival data has been rapid in recent years; however, their full potential in applied settings are yet to be fully explored. We describe a novel use of a specific association structure, linking the two component models through the subject specific intercept, and thus extend joint models to account for measurement error in a biomarker, even when only the baseline value of the biomarker is of interest. This is a common occurrence in registry data sources, where often repeated measurements exist but are simply ignored. The proposed specification is evaluated through simulation and applied to data from the General Practice Research Database, investigating the association between baseline Systolic Blood Pressure (SBP) and the time-to-stroke in a cohort of obese patients with type 2 diabetes mellitus. By directly modelling the longitudinal component we reduce bias in the hazard ratio for the effect of baseline SBP on the time-to-stroke, showing the large potential to improve on previous prognostic models which use only observed baseline biomarker values. The joint modelling of longitudinal and survival data is a valid approach to account for measurement error in the analysis of a repeatedly measured biomarker and a time-to-event. User friendly Stata software is provided.
    BMC Medical Research Methodology 12/2013; 13(1):146. DOI:10.1186/1471-2288-13-146 · 2.17 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Mediation analysis is important for understanding the mechanisms whereby one variable causes changes in another. Measurement error could obscure the ability of the potential mediator to explain such changes. This article focuses on developing correction methods for measurement error in the mediator with failure time outcomes. We consider a broad definition of measurement error, including technical error, and error associated with temporal variation. The underlying model with the “true” mediator is assumed to be of the Cox proportional hazards model form. The induced hazard ratio for the observed mediator no longer has a simple form independent of the baseline hazard function, due to the conditioning event. We propose a mean-variance regression calibration approach and a follow-up time regression calibration approach, to approximate the partial likelihood for the induced hazard function. Both methods demonstrate value in assessing mediation effects in simulation studies. These methods are generalized to multiple biomarkers and to both case-cohort and nested case-control sampling designs. We apply these correction methods to the Women's Health Initiative hormone therapy trials to understand the mediation effect of several serum sex hormone measures on the relationship between postmenopausal hormone therapy and breast cancer risk.
    Biometrics 08/2014; 70(4). DOI:10.1111/biom.12205 · 1.52 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: We pooled data from 5 large validation studies of dietary self-report instruments that used recovery biomarkers as references to clarify the measurement properties of food frequency questionnaires (FFQs) and 24-hour recalls. The studies were conducted in widely differing US adult populations from 1999 to 2009. We report on total energy, protein, and protein density intakes. Results were similar across sexes, but there was heterogeneity across studies. Using a FFQ, the average correlation coefficients for reported versus true intakes for energy, protein, and protein density were 0.21, 0.29, and 0.41, respectively. Using a single 24-hour recall, the coefficients were 0.26, 0.40, and 0.36, respectively, for the same nutrients and rose to 0.31, 0.49, and 0.46 when three 24-hour recalls were averaged. The average rate of under-reporting of energy intake was 28% with a FFQ and 15% with a single 24-hour recall, but the percentages were lower for protein. Personal characteristics related to under-reporting were body mass index, educational level, and age. Calibration equations for true intake that included personal characteristics provided improved prediction. This project establishes that FFQs have stronger correlations with truth for protein density than for absolute protein intake, that the use of multiple 24-hour recalls substantially increases the correlations when compared with a single 24-hour recall, and that body mass index strongly predicts under-reporting of energy and protein intakes.
    American Journal of Epidemiology 06/2014; 180(2). DOI:10.1093/aje/kwu116 · 4.98 Impact Factor


1 Download
Available from