Repair of full-thickness tendon injury using connective tissue progenitors efficiently derived from human embryonic stem cells and fetal tissues.

Sohnis and Forman Families Center for Stem Cell and Tissue Regeneration Research, Faculty of Medicine, Technion, Haifa, Israel.
Tissue engineering. Part A 10/2010; 16(10):3119-37. DOI: 10.1089/ten.TEA.2009.0716
Source: PubMed

ABSTRACT The use of stem cells for tissue engineering (TE) encourages scientists to design new platforms in the field of regenerative and reconstructive medicine. Human embryonic stem cells (hESC) have been proposed to be an important cell source for cell-based TE applications as well as an exciting tool for investigating the fundamentals of human development. Here, we describe the efficient derivation of connective tissue progenitors (CTPs) from hESC lines and fetal tissues. The CTPs were significantly expanded and induced to generate tendon tissues in vitro, with ultrastructural characteristics and biomechanical properties typical of mature tendons. We describe a simple method for engineering tendon grafts that can successfully repair injured Achilles tendons and restore the ankle joint extension movement in mice. We also show the CTP's ability to differentiate into bone, cartilage, and fat both in vitro and in vivo. This study offers evidence for the possibility of using stem cell-derived engineered grafts to replace missing tissues, and sets a basic platform for future cell-based TE applications in the fields of orthopedics and reconstructive surgery.

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Tissue engineering and regenerative medicine (TERM) has caused a revolution in present and future trends of medicine and surgery. In different tissues, advanced TERM approaches bring new therapeutic possibilities in general population as well as in young patients and high-level athletes, improving restoration of biological functions and rehabilitation. The mainstream components required to obtain a functional regeneration of tissues may include biodegradable scaffolds, drugs or growth factors and different cell types (either autologous or heterologous) that can be cultured in bioreactor systems (in vitro) prior to implantation into the patient. Particularly in the ankle, which is subject to many different injuries (e.g. acute, chronic, traumatic and degenerative), there is still no definitive and feasible answer to 'conventional' methods. This review aims to provide current concepts of TERM applications to ankle injuries under preclinical and/or clinical research applied to skin, tendon, bone and cartilage problems. A particular attention has been given to biomaterial design and scaffold processing with potential use in osteochondral ankle lesions.
    Journal of The Royal Society Interface 01/2014; 11(92):20130784. · 4.91 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Human embryonic stem cells have the capacity for self-renewal and pluripotency, making them a primary candidate for tissue engineering and regenerative therapies. To date, numerous human embryonic stem cell (hESC) lines have been developed and characterized. In this chapter, we discuss how hESC lines are derived, the means by which pluripotency is monitored, and how their ability to differentiate into all three embryonic germ layers is determined. We also outline the methods currently employed to direct their differentiation into populations of tissue-specific, functional cells. Finally, we highlight the general challenges that must be overcome and the strategies being developed in order to generate highly purified hESC-derived cell populations that can safely be used for clinical applications.
    12/2010: pages 17-38;
  • [Show abstract] [Hide abstract]
    ABSTRACT: Human mesenchymal stem cells (hMSCs) have the ability to differentiate into mesenchymal lineages. In this study, we hypothesized that treatment of embryoid bodies (EBs) composed of either human embryonic stem cells (hESCs) or human induced pluripotent stem cells (hiPSCs) with hMSC-conditioned medium (CM) can stimulate the induction of the mesodermal lineage and subsequent differentiation toward the osteogenic and chondrogenic lineage. Quantitative real-time reverse transcription-polymerase chain reaction (qRT-PCR) analysis indicated that the hMSC-CM treatment increased gene expression related to the mesodermal lineage and decreased gene expression related to the endodermal and ectodermal lineage in EBs. Fourteen days after culturing the mesodermal lineage-induced EBs in osteogenic or chondrogenic differentiation medium, we observed enhanced osteogenic and chondrogenic differentiation compared to untreated EBs, as evaluated using qRT-PCR, cytochemistry, immunocytochemistry, and flow cytometry. This method may be useful for enhancing the osteogenic or chondrogenic differentiation of hESCs or hiPSCs.
    Tissue engineering. Part A. 11/2013;