Article

Repair of full-thickness tendon injury using connective tissue progenitors efficiently derived from human embryonic stem cells and fetal tissues.

Sohnis and Forman Families Center for Stem Cell and Tissue Regeneration Research, Faculty of Medicine, Technion, Haifa, Israel.
Tissue Engineering Part A (Impact Factor: 4.64). 10/2010; 16(10):3119-37. DOI: 10.1089/ten.TEA.2009.0716
Source: PubMed

ABSTRACT The use of stem cells for tissue engineering (TE) encourages scientists to design new platforms in the field of regenerative and reconstructive medicine. Human embryonic stem cells (hESC) have been proposed to be an important cell source for cell-based TE applications as well as an exciting tool for investigating the fundamentals of human development. Here, we describe the efficient derivation of connective tissue progenitors (CTPs) from hESC lines and fetal tissues. The CTPs were significantly expanded and induced to generate tendon tissues in vitro, with ultrastructural characteristics and biomechanical properties typical of mature tendons. We describe a simple method for engineering tendon grafts that can successfully repair injured Achilles tendons and restore the ankle joint extension movement in mice. We also show the CTP's ability to differentiate into bone, cartilage, and fat both in vitro and in vivo. This study offers evidence for the possibility of using stem cell-derived engineered grafts to replace missing tissues, and sets a basic platform for future cell-based TE applications in the fields of orthopedics and reconstructive surgery.

0 Bookmarks
 · 
100 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Tendon is a strong connective tissue that transduces muscle-generated forces into skeletal motion. In fulfilling this role, tendons are subjected to repeated mechanical loading and high stress, which may result in injury. Tissue engineering with stem cells offers the potential to replace injured/damaged tissue with healthy, new living tissue. Critical to tendon tissue engineering is the induction and guidance of stem cells towards the tendon phenotype. Typical strategies have relied on adult tissue homeostatic and healing factors to influence stem cell differentiation, but have yet to achieve tissue regeneration. A novel paradigm is to use embryonic developmental factors as cues to promote tendon regeneration. Embryonic tendon progenitor cell differentiation in vivo is regulated by a combination of mechanical and chemical factors. We propose that these cues will guide stem cells to recapitulate critical aspects of tenogenesis and effectively direct the cells to differentiate and regenerate new tendon. Here, we review recent efforts to identify mechanical and chemical factors of embryonic tendon development to guide stem/progenitor cell differentiation toward new tendon formation, and discuss the role this work may have in the future of tendon tissue engineering.
    Journal of biomechanics 01/2014; · 2.66 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Tissue engineering and regenerative medicine (TERM) has caused a revolution in present and future trends of medicine and surgery. In different tissues, advanced TERM approaches bring new therapeutic possibilities in general population as well as in young patients and high-level athletes, improving restoration of biological functions and rehabilitation. The mainstream components required to obtain a functional regeneration of tissues may include biodegradable scaffolds, drugs or growth factors and different cell types (either autologous or heterologous) that can be cultured in bioreactor systems (in vitro) prior to implantation into the patient. Particularly in the ankle, which is subject to many different injuries (e.g. acute, chronic, traumatic and degenerative), there is still no definitive and feasible answer to 'conventional' methods. This review aims to provide current concepts of TERM applications to ankle injuries under preclinical and/or clinical research applied to skin, tendon, bone and cartilage problems. A particular attention has been given to biomaterial design and scaffold processing with potential use in osteochondral ankle lesions.
    Journal of The Royal Society Interface 01/2014; 11(92):20130784. · 4.91 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Tendon injuries are prevalent and problematic, especially among young and otherwise healthy individuals. The inherently slow innate healing process combined with the inevitable scar tissue formation compromise functional recovery, imposing the need for the development of therapeutic strategies. The limited number of low activity/reparative capacity tendon-resident cells has directed substantial research efforts towards the exploration of the therapeutic potential of various stem cells in tendon injuries and pathophysiologies. Severe injuries require the use of a stem cell carrier to enable cell localisation at the defect site. The present study describes advancements that injectable carriers, tissue grafts, anisotropically orientated biomaterials, and cell-sheets have achieved in preclinical models as stem cell carriers for tendon repair.
    Stem Cell Research & Therapy 03/2014; 5(38). · 3.65 Impact Factor

Full-text

View
0 Downloads