In Vivo Imaging of α-Synuclein in Mouse Cortex Demonstrates Stable Expression and Differential Subcellular Compartment Mobility

Alzheimer's Research Unit, MassGeneral Institute for Neurodegenerative Disease, MGH Harvard Medical School, Charlestown, Massachusetts, United States of America.
PLoS ONE (Impact Factor: 3.53). 05/2010; 5(5):e10589. DOI: 10.1371/journal.pone.0010589
Source: PubMed

ABSTRACT Regulation of alpha-synuclein levels within cells is thought to play a critical role in Parkinson's Disease (PD) pathogenesis and in other related synucleinopathies. These processes have been studied primarily in reduced preparations, including cell culture. We now develop methods to measure alpha-synuclein levels in the living mammalian brain to study in vivo protein mobility, turnover and degradation with subcellular specificity.
We have developed a system using enhanced Green Fluorescent Protein (GFP)-tagged human alpha-synuclein (Syn-GFP) transgenic mice and in vivo multiphoton imaging to measure alpha-synuclein levels with subcellular resolution. This new experimental paradigm allows individual Syn-GFP-expressing neurons and presynaptic terminals to be imaged in the living mouse brain over a period of months. We find that Syn-GFP is stably expressed by neurons and presynaptic terminals over this time frame and further find that different presynaptic terminals can express widely differing levels of Syn-GFP. Using the fluorescence recovery after photobleaching (FRAP) technique in vivo we provide evidence that at least two pools of Syn-GFP exist in terminals with lower levels of mobility than measured previously. These results demonstrate that multiphoton imaging in Syn-GFP mice is an excellent new strategy for exploring the biology of alpha-synuclein and related mechanisms of neurodegeneration.
In vivo multiphoton imaging in Syn-GFP transgenic mice demonstrates stable alpha-synuclein expression and differential subcellular compartment mobility within cortical neurons. This opens new avenues for studying alpha-synuclein biology in the living brain and testing new therapeutics for PD and related disorders.

Download full-text


Available from: Edward Rockenstein, Jun 30, 2015
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Time-lapse fluorescence microscopy is one of the main tools used to image subcellular structures in living cells. Yet for decades it has been applied primarily to in vitro model systems. Thanks to the most recent advancements in intravital microscopy, this approach has finally been extended to live rodents. This represents a major breakthrough that will provide unprecedented new opportunities to study mammalian cell biology in vivo and has already provided new insight in the fields of neurobiology, immunology, and cancer biology.
    The Journal of Cell Biology 06/2013; 201(7):969-979. DOI:10.1083/jcb.201212130 · 9.69 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Abnormal accumulation of α-synuclein is centrally involved in the pathogenesis of many disorders with Parkinsonism and dementia. Previous in vitro studies suggest that α-synuclein dysregulates intracellular calcium. However, it is unclear whether these alterations occur in vivo. For this reason, we investigated calcium dynamics in transgenic mice expressing human WT α-synuclein using two-photon microscopy. We imaged spontaneous and stimulus-induced neuronal activity in the barrel cortex. Transgenic mice exhibited augmented, long-lasting calcium transients characterized by considerable deviation from the exponential decay. The most evident pathology was observed in response to a repetitive stimulation in which subsequent stimuli were presented before relaxation of calcium signal to the baseline. These alterations were detected in the absence of significant increase in neuronal spiking response compared with age-matched controls, supporting the possibility that α-synuclein promoted alterations in calcium dynamics via interference with intracellular buffering mechanisms. The characteristic shape of calcium decay and augmented response during repetitive stimulation can serve as in vivo imaging biomarkers in this model of neurodegeneration, to monitor progression of the disease and screen candidate treatment strategies.
    The Journal of Neuroscience : The Official Journal of the Society for Neuroscience 07/2012; 32(29):9992-8. DOI:10.1523/JNEUROSCI.1270-12.2012 · 6.75 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Increased intracellular levels of α-synuclein are implicated in Parkinson's disease and related disorders and may be caused by alterations in the ubiquitin-proteasome system (UPS) or the autophagy-lysosomal pathway (ALP). A critical question remains how α-synuclein is degraded by neurons in vivo. To address this, our study uses α-synuclein transgenic mice, expressing human α-synuclein or α-synuclein-eGFP under the (h)PDGF-β promoter, in combination with in vivo pharmacologic and multiphoton imaging strategies to systematically test degradation pathways in the living mouse brain. We demonstrate that the UPS is the main degradation pathway for α-synuclein under normal conditions in vivo while with increased α-synuclein burden the ALP is recruited. Moreover, we report alterations of the UPS in α-synuclein transgenic mice and age dependence to the role of the UPS in α-synuclein degradation. In addition, we provide evidence that the UPS and ALP might be functionally connected such that impairment of one can upregulate the other. These results provide a novel link between the UPS, the ALP, and α-synuclein pathology and may have important implications for future therapeutics targeting degradation pathways.
    The Journal of Neuroscience : The Official Journal of the Society for Neuroscience 10/2011; 31(41):14508-20. DOI:10.1523/JNEUROSCI.1560-11.2011 · 6.75 Impact Factor